
FMTOMOFMTOMO

Fast Marching Tomography Package:

Instruction Manual

by Nick Rawlinson

Research School of Earth Sciences, Australian National University, Canberra ACT 0200

Contents

1 Introduction 4

1.1 Associated documentation . 5

1.2 External software requirements . 6

1.3 Compatibility and operation . 6

2 Unpacking and compiling the code 7

3 Constructing initial and synthetic models 10

3.1 Model Parameterization . 11

3.2 Using grid3dg to generate a model . 14

3.2.1 Setting the model dimensions . 15

3.2.2 Specifying the propagation grid . 16

3.2.3 Defining the velocity grids . 18

3.2.4 Defining the interface grids . 24

4 Solving the forward problem with fm3d 26

5 Solving the inverse problem with invert3d 27

6 Constructing a tomographic solution model with tomo3d 35

7 Data input 37

7.1 Path signatures . 38

7.2 Constructing synthetic datasets with moddata 39

7.3 Including observational data with obsdata 43

7.4 Generating a synthetic traveltime dataset 47

8 Plotting the output 49

8.1 Producing GMT output with gmtslice . 49

8.2 Using the GMT plotting scripts . 56

9 Examples 57

9.1 Example 1: Hypocenter relocation . 57

9.2 Example 2: Inversion for interface and velocity structure 61

2

9.3 Example 3: Joint inversion of active and passive source datasets 64

10 FAQs 68

3

1 Introduction

This document describes how to use the Fortran software package FMTOMO to perform

3-D traveltime tomography. FMTOMO uses the fast marching method (FMM) for the

forward step of traveltime prediction, and a subspace inversion scheme to adjust model

parameters in order to satisfy data observations. The method is iterative non-linear in that

the inversion step assumes local linearity, but repeated application of FMM and subspace

inversion allows the non-linear relationship between velocity and traveltime perturbations

to be reconciled.

The long term goal of the FMTOMO project is to produce a comprehensive package

for carrying out many different classes of traveltime tomography. In its current form

(version 1.0), model structure is represented by subhorizontal layers in spherical coordi-

nates. Within a layer, velocity is permitted to vary smoothly in all three dimensions.

The geometry of layer boundaries may also vary, but all interfaces must completely span

the horizontal dimensions of the model region, and cannot be multi-valued in depth (i.e.

cannot fold over on itself). Although structures such as discrete bodies or salt domes

cannot be accurately represented with this style of parameterization, a wide variety of

other structures (e.g. a subducting slab) may nevertheless be considered.

FMTOMO uses the fm3d package to solve the forward problem. fm3d is based on

the so called multi-stage Fast Marching Method (FMM), a grid based eikonal solver that

implicitly tracks the evolution of wavefronts in 3-D layered media. Phases comprising any

number of reflection and refraction branches may be tracked (including P-S conversions).

Tests show it to be computationally efficient and robust in the presence of severe variations

in both velocity and interface structure. Sources may lie at the surface, at depth, or

outside the model region (i.e. teleseismic events), thus allowing many different types of

traveltime datasets to be predicted, including reflection, refraction, local earthquake and

teleseismic.

The subspace inversion scheme minimizes an objective function simultaneously along

multiple search directions that together span a subspace of model space. Both damping

and smoothing regularization can be applied in order to address the problem of solution

non-uniqueness. At this stage, FMTOMO can simultaneously invert one or more classes

of traveltime dataset for variations in wavespeed, interface depth and source location.

It is important to realize that a common drawback of sophisticated academic software

4

packages is that they are often not user friendly, and require a serious time commitment

before they yield the desired results. The flexibility offered by FMTOMO to some extent

necessitates a rather complex user interface, which from experience with “novice” users,

takes a fair amount of time to comprehend. Therefore, if you are serious about using

this package, be prepared to spend a day or two carefully reading though this instruction

manual, the instructions associated with fm3d and journal papers that have used FM-

TOMO. In addition, it is strongly recommended that the three examples that come with

this distribution are examined, and that the results they contain can be reproduced using

your compilation of the code.

1.1 Associated documentation

• The following paper (a PDF version is included in the docs/ directory) uses FM-

TOMO to invert synthetic data for source location (see Example 1), and velocity

and interface structure (see Example 2):

Rawlinson, N., de Kool, M. and Sambridge, M., 2006. Seismic wavefront track-

ing in 3-D heterogeneous media: applications with multiple data classes. Explor.

Geophys., 37, 322-330.

• The following paper (a PDF version is included in the docs/ directory) uses FM-

TOMO to simultaneously invert wide-angle and teleseismic data for both Moho

geometry and lithospheric velocity structure beneath Tasmania, south-east Aus-

tralia (see Example 3):

Rawlinson, N. and Urvoy, M., 2006. Simultaneous inversion of active and passive

source datasets for 3-D seismic structure with application to Tasmania. Geophys.

Res. Lett., 33 L24313, doi:10.1029/2006GL028105.

• The following paper (a PDF version is included in the docs directory) describes the

fm3d package in detail:

de Kool, M., Rawlinson, N. and Sambridge, M. 2006. A practical grid based method

for tracking multiple refraction and reflection phases in 3D heterogeneous media,

Geophys. J. Int., 167, 253-270.

• The instructions for using fm3d can be found in the sub-directory fmcode/ (open

the text file README 0.7). Note that in theory, you do not need a comprehensive

5

understanding of fm3d in order to use FMTOMO.

1.2 External software requirements

• The home page for the fm3d package can be found at:

http://rses.anu.edu.au/seismology/fmmcode

Note that the source code comes with the FMTOMO distribution, so there is no

need to download it separately.

• The plotting routines that come with FMTOMO make use of GMT (the Generic

Mapping Tool), a script-based visualization package. It is freely available to down-

load from:

http://gmt.soest.hawaii.edu

• fm3d includes an option for output files in OpenDX format. OpenDX is a sophis-

ticated 3-D visualization package that is available for free from:

http://www.opendx.org

1.3 Compatibility and operation

FMTOMO has been tested on several UNIX/Linux platforms. In theory, it should work

with most Fortran 90 (or later) compilers. Under Linux, it has been successfully compiled

and executed with Pathscale, g95 and ifort (Intel Fortran Compiler). On Sun Solaris

operating systems (with both AMD and UltraSparc CPUs), it has correctly compiled and

executed using the Sun Fortran 90 compiler. However, note that from our experience

with Sun Blade Workstations that use UltraSparc CPUs, execution time is very slow (at

least an order of magnitude slower) compared to machines that use recent Intel and AMD

CPUs. Our best results have come from using Pentium 4 (or later) Intel CPUs together

with Intels ifort compiler.

The memory requirements of FMTOMO vary depending on the size of the problem be-

ing solved. For most realistic scenarios (e.g. Example 3 in the distribution), a workstation

with 512 Mb - 1 Gb of RAM should be sufficient.

6

2 Unpacking and compiling the code

FMTOMO is distributed as a tarred and gzipped archive. In order to unpack the code,

type something like:

• gunzip -c fmtomov1.0.tar.gz | tar xvof -

or

• tar -xvzf fmtomov1.0.tar.gz

at the command prompt. One of the above commands will create a set of subdirectories

below the current directory, which should contain:

• bin/: Contains all executable files associated with FMTOMO. Prior to compilation,

the only executable file that should be present in this subdirectory is tomo3d, which

is a shell script.

• compileall: A shell script for compiling all software and placing executables in bin/.

• docs/: Contains documentation associated with FMTOMO, including this instruc-

tion manual. Several journal papers which use the code are also included.

• example1/: Synthetic test example which attempts to relocate earthquake hypocen-

ters in the presence of 3-D velocity and interface structure.

• example2/: Synthetic test example which simultaneously inverts teleseismic and

wide-angle data for both velocity and interface structure.

• example3/: Inverts observed teleseismic and wide-angle traveltime data for the struc-

ture of the Tasmanian (south east Australia) lithosphere.

• fmcode/: Contains the source files for building fm3d and constructing the binary

traveltime tables for predicting global phases in spherically symmetric Earth models

(for tracking teleseismic arrivals).

• gmtfiles/: Contains several GMT shell scripts for plotting cross-sections through

models produced by FMTOMO.

• source/: Contains all source files for FMTOMO, with the exception of the source

files for fm3d.

7

FMTOMO is made up of a number of different Fortran programs. These include:

• arraygen: A simple program for generating rectangular arrays of receivers (latitude,

longitude, depth) for performing synthetic tests.

• fm3d: Solves the forward problem of traveltime prediction by applying the so-called

multi-stage Fast Marching Method. fm3d can also output ray paths and Fréchet

derivatives, the latter of which are required by the inversion routine.

• gmtslice: A program for taking output from the tomographic inversion routine and

converting it into a format suitable for use with GMT. Various types of horizontal

and vertical sections can be taken through a 3-D model. Ray paths, sources and

receivers may also be visualized.

• grid3dg: A program for constructing 3-D models in the format required by fm3d. It

can be used to construct checkerboard or other synthetic test models (e.g. random

structure), and initial models for tomographic inversion. In the latter case, it is best

for producing models in which velocity varies with depth only, and interfaces are

planar. However, it does allow more complex models to be generated using separate

grid files supplied by the user.

• invert3d: This program uses the subspace inversion method to invert the traveltime

data for model structure. Regularization in the form of damping and smoothing

can be imposed.

• moddata: A program for generating source and receiver input files in the format

required by fm3d. These files also contain information about path signatures, and

do not have a very intuitive structure. moddata is best used for purely synthetic

tests (e.g. Examples 1 and 2), and not cases where observational data is involved

(e.g. Example 3). For these situations, obsdata is usually a better option.

• obsdata: A program for generating source, receiver and traveltime input files in the

format required by fm3d. This program is best used for cases where observed data

are involved. obsdata expects these observations to be listed in separate files which

it can access. The difference between moddata and obsdata may seem confusing

at this stage, but it will be made clearer later on.

8

• residuals: Computes summary traveltime residuals (RMS, variance and χ2) associ-

ated with the current model.

• synthdata: A simple program for generating synthetic traveltimes. It takes output

from fm3d (the list of arrival time predictions contained in arrivals.dat), and adds

random noise (if required) and an estimate of picking error (required by invert3d).

The output file can be used as input to the tomography routine for performing a

synthetic test (e.g. a checkerboard test).

• remodl,setbrn: A pair of programs that, when run sequentially, produces the travel-

time tables required for predicting the arrival times of global phases. The default

setting assumes an ak135 global model, and the binary files produced are called

ak135.hed and ak135.tbl. Note that if teleseismic arrival time prediction is required,

these files must be in the same directory in which fm3d is executed. The source

code for the two programs are contained in fmtomo/aktimes/.

All of the above programs can be compiled separately and moved to the bin subdi-

rectory (except for remodl and setbrn, which only need to be executed once to produce

the binary tables for the specific machine architecture that is used). However, it is much

simpler to run the script compileall, which is the only file contained in the root directory

of the distribution. This script will compile all of the above code and move the executa-

bles to bin/. It will also build and execute remodl and setbrn, and copy the output files

ak135.hed and ak135.tbl to source/inputfiles.

Prior to running compileall, perform the following steps:

1. Open compileall in your favourite editor and check that the ksh directive on the

first line points to the correct location. If you do not have ksh, use zsh instead.

2. On line 22 of compileall, enter the name of the Fortran 90 (or later) compiler you

wish to use for compiling all the code except fm3d.

3. Open the Makefile contained in the subdirectory fmcode/. On line 7, enter the

name of the the Fortran 90 (or later) compiler you wish to use for compiling fm3d.

4. Open the Makefile contained in the subdirectory fmcode/aktimes/ and enter the

name of the Fortran compiler you wish to use for compiling remodl and setbrn.

9

Although these programs are written in Fortran 77, you should be able to use the

same compiler you used for the other programs.

At this stage, you should be able to type compileall at the command line, hit Enter,

and all the code will successfully compile (fingers crossed). On a 1.6 GHz AMD Opteron

workstation running SuSe Linux 9.3, this process takes about 30 seconds when the Intel

Fortran compiler (ifort) is used. There will be some screen output associated with the

compilation of fm3d and the creation of the binary traveltime tables (a list of numbers

and global phase names will appear at the end), so do not be alarmed. When compileall

is complete, it will print the statement “compilation complete” to the screen. In order to

run the executables from any directory, you will need to make sure that the path to the

bin/ directory is correctly set in your startup shell script. Alternatively, you could copy

the executables to a directory that you know is already specified in the path list, although

this is perhaps the less desirable option. In the former case, if you use a .cshrc file, then

you could add a line like:

• set path = ($path /directories/bin)

after the path is initially set. In the above example, directories refers to the directory

structure above the bin directory (e.g. ∼/tomography/fmtomo).

Before using FMTOMO, open tomo3d, which is contained in the bin subdirectory,

and make sure that the ksh directive on the first line points to the correct location. If

you do not have ksh, use zsh instead. At this stage, you are in a position to go ahead and

see if your compiled version of the code will correctly reproduce the examples provided.

3 Constructing initial and synthetic models

The first step in performing a tomographic inversion is to specify how model structure

is to be represented (i.e. how the model is to be parameterized). This is a crucial choice

because it immediately imposes limitations on the types of structure that can be recovered

(in a sense, it represents a kind of implicit regularization of the problem). In the case

of FMTOMO, velocity is represented by a regular grid of points with cubic B-splines

applied to define a continuum. Interfaces are represented by a regular grid of points in

latitude and longitude, the depths of which can vary, with cubic B-splines used to define

a continuous surface.

10

Given that the underlying parameterization has already been imposed, the remaining

choices for the user are: the number of layers; the density of nodes describing each velocity

field and layer interface; and the values associated with these nodes. When choosing an

initial or starting model for subsequent inversion, a priori information is often such that

only a laterally homogeneous structure needs to be generated. However, when independent

information on lateral structure is available, or when synthetic tests are to be performed,

then it is often necessary to construct more complex models.

Details on how the interface and velocity grid files are structured can be found in the

README 0.7 file under fmtomo. This information is not provided here because the format

of these input files is dictated by fm3d, which is a separate package. However, a useful

program provided as part of this distribution, called grid3dg, makes the task of generating

initial and synthetic models much simpler than it otherwise might be. Before describing

the input requirements of this program, a brief overview of the model parameterization

used by FMTOMO is provided.

3.1 Model Parameterization

As mentioned previously, FMTOMO represents structure by a series of one or more

subhorizontal layers which completely span the model region in latitude and longitude.

Within each layer, the velocity field is defined by a regular grid of nodes. These nodes

are used as the control vertices of a mosaic of cubic B-spline volume elements, which

define the continuum. Layer interfaces are described by a regular mesh in latitude and

longitude, which control a mosaic of cubic B-spline surface patches that describe the com-

plete interface. Cubic B-spline functions are desirable because they exhibit local control

(i.e. changing the value of a single node only affects the interface or velocity field in the

vicinity of the node), continuity of the second derivative, and can be rapidly evaluated.

This last property is important because in order to use the multi-stage FMM, a propaga-

tion grid must be defined over which the narrow band evolves; typically, this will involve

many evaluations of the spline function.

Figure 1 demonstrates (in cross-section) the basic concept of the layered parameteriza-

tion. One of the most important things to understand is that the velocity grid within each

layer is defined independently of the other layers. This means, for example, that in the

first layer v1(r, θ, φ) has its own grid of velocity nodes, which is separate from v2(r, θ, φ)

11

in the second layer. The node spacing of these grids can be different (although in Figure

1 they are the same), and they can also spatially overlap. When interface structure is

inverted for, interface nodes are perturbed in depth, which means that vertically, the layer

can expand or contract. In effect, this will make some velocity nodes redundant (they will

not influence traveltime), but will also activate previously redundant nodes. fm3d will

automatically select which region of the velocity grid to use depending on the structure

of the bounding interfaces.

v (r,θ,φ)1

v (r,θ,φ)3

v (r,θ,φ)2

v (r,θ,φ)4

Interface 1

Interface 2

Interface 5

Interface 3

Interface 4

Interface node Boundary interface node Velocity node Boundary velocity node

Figure 1: Schematic diagram showing in vertical cross-section the model parameteriza-

tion adopted by FMTOMO. Velocity within each layer is independent of the velocity in

adjacent layers. Both velocity and interface grids must have a set of boundary nodes.

Note that the velocity continuum and interface surface defined by cubic B-splines need

not interpolate the velocity and interface nodes.

Several other features of Figure 1 are also worth noting. First, both the interface

and velocity grids are required to have a cushion of boundary nodes. The continuous

velocity fields and interface surfaces do not extend out to these cushion nodes, but cease

exactly one node inboard of the boundary. Thus, if a grid is defined by N nodes in a

particular dimension, the velocity continuum or interface surface will only span N − 2 of

these nodes. A second notable feature of Figure 1 is that the surfaces do not necessarily

interpolate the interface nodes. This is also true of the velocity continuum (and obviously

can’t be shown in Figure 1), which does not necessarily interpolate the velocity nodes.

12

Both of these features stem from the use cubic B-splines to define the interface surfaces

and velocity fields. Cubic B-spline functions are basically piecewise cubic polynomials

that are continuous in curvature where they suture together. In addition, they are locally

controlled (unlike natural cubic splines) in that only four control nodes are required in

order to define a single segment. Figure 2 illustrates this concept.

Figure 2: Segment of a cubic B-spine curve. In order to ensure local control and continuity

of curvature, these splines are non-interpolating.

Figure 1 also includes a layer pinch-out, something that is permitted by FMTOMO.

When this occurs, two adjacent interfaces essentially overlap, which effectively results in

the layer bounded by these interfaces becoming horizontally discontinuous. In order to

facilitate this feature, fm3d requires the horizontal node spacing of all interface grids to

be identical.

−400

−300

−200

−100

0

−400

−300

−200

−100

0

136 137 138 139 140 141 142 143 144 145

136 137 138 139 140 141 142 143 144 145

4 5 6 7 8 9 10 11
v (km/s)

Figure 3: Cross-section through a complex layered velocity model (ostensibly showing a

synthetic subduction zone) defined using the FMTOMO parameterization scheme.

An example of a cross-section through a complex synthetic velocity model that con-

13

forms to the above parameterization is shown in Figure 3. Note that both velocity and

interface structure varies smoothly, and multiple layer pinchouts can be specified.

3.2 Using grid3dg to generate a model

A program called grid3dg is provided with this distribution to facilitate the generation

of a range of models for use either as input starting models for a tomographic inversion, or

for generating synthetic data (e.g. for a checkerboard resolution test). grid3dg requires

an input parameter file, called grid3dg.in, in order to generate a model. A generic version

of this input file can be found in source/inputfiles/.

To some extent, the format of grid3dg.in is self-explanatory, but we will nevertheless

attempt to describe a selection of the more important entries. If you open the input file

located in source/inputfiles, you will see that the first entry block is as follows:

ccc

c Specify number of layers (= number of interfaces -1)

ccc

2 c: Number of layers in model

1 c: Number of velocity grid types (1 or 2)

0.02 c: Pinchout distance (km) (>=0.0)

vgrids.in c: Output velocity grid file

interfaces.in c: Output interface grid file

145678 c: Seed for random number generation (int)

The first line specifies the number of layers in the model. As indicated in Figure 1, the

number of layers must equal the number of interfaces minus 1. The second line indicates

the number of velocity grid types. fm3d allows both a P-wave velocity field and an S-

wave velocity field to be independently defined within a single layer. This is to facilitate

mode conversions (e.g. SmP). Thus, if you are only interested in a single velocity type

(P or S), then set this value to 1. Note that at this stage, the ability of FMTOMO

to simultaneously invert for both P and S velocities has not been properly tested. If

your dataset does not include mode conversions, then there is no need to specify more

than one velocity field within a single layer. The third line sets the minimum pinchout

14

distance between adjacent interfaces. grid3dg automatically checks to see whether you

have specified interfaces that intersect and applies a correction if necessary. Although in

some cases you may want a layer to fully pinch-out, it is usually safer to specify some

small tolerance to avoid potential complications with fm3d (e.g. round-off error).

The next two lines specify the names of the velocity (vgrids.in) and interface (inter-

faces.in) files that are created by grid3dg. Together, these two files fully specify the

model, and constitute two of the input files required by fm3d. As such, they have been

given the appropriate filenames that are needed for fm3d. The final line sets the seed for

random number generation. This is used to seed the generation of random noise with a

Gaussian distribution, which in turn is used to superimpose random structure on a model

if required by the user (e.g. for a synthetic test).

3.2.1 Setting the model dimensions

The second entry block is as follows:

ccc

c Set 3-D grid size and location. Note that all layer

c velocity grids have the same spatial dimension, but can

c have different node densities. Interface grids have the

c same node distribution.

ccc

1.50 -80.10 c: Radial range (top-bottom) of grid (km)

-40.0 -42.0 c: Latitudinal range (N-S) of grid (degrees)

140.0 143.0 c: Longitudinal range (E-W) of grid (degrees)

6371.0 c: Earth radius

These options specify the location of the model and its dimensions (in spherical coordi-

nates). The radial range of the model is relative to the surface of the Earth, and defines

how far the model extends in depth. In this case, the “top” of the model is 1.5 km above

the surface of the Earth, and the “bottom” of the model is 80.1 km below the surface.

When surface topography is a factor, it is usually necessary to have the top of the model

above the surface of the Earth to ensure that receivers do not lie outside the bounds of

15

the model. When defining the N-S range of the model, note that northern hemisphere

latitudes are positive, and southern hemisphere latitudes are negative. Longitudes should

be defined as East of the meridian, rather than west (e.g. you should convert 115◦ W to

245◦ E). Note: grid3dg automatically adds a cushion of boundary nodes (see Figure 1)

to the defined grid. Therefore, the 3-D model region you define will be fully spanned by

all velocity fields and interface surfaces.

3.2.2 Specifying the propagation grid

The third block of parameters in grid3dg.in is:

cc

c Set up propagation grid file

cc

propgrid.in c: Name of propagation grid file

21 41 41 c: Number of points in rad lat, long

5 10 c: Refine factor & no. of local cells

0.05 c: Cushion factor for prop grid (<<1)

These parameters don’t actually influence the model structure at all; instead, they define

what is known as the propagation grid for implicitly tracking seismic wavefronts using

fm3d. However, the reason why these parameters are defined here is that the propgrid.in

file required by fm3d needs the origin of the propagation grid and the propagation grid

spacing to be specified. Rather than try and enter this information manually in propgrid.in,

it is easier to specify it at this point to avoid inconsistencies. In theory, propgrid.in can

span a subset of the defined model, but grid3dg automatically scales the propagation

grid to the boundary of the complete model. The first line above defines the name of

the propagation grid file which is to be read in by fm3d (therefore, you should not need

to change this filename). The second line specifies the number of points defining the

propagation grid in depth, latitude and longitude. In this case, there are 21 propagation

grid nodes spanning a depth range from 1.5 km to -80.1 km, which results in a grid spacing

of 4.08 km.

16

It is important to understand the difference between the inversion grid and the

propagation grid. The inversion grid describes the model (via vgrids.in and interfaces.in)

- i.e. it represents the grid of velocity and interface control nodes (e.g. Figure 1) that

describes the velocity and interface variations (in terms of cubic B-spline functions). The

propagation grid, on the other hand, represents a discrete sampling of the velocity fields

(and implicitly the interface surfaces) for use by fm3d, which is a grid-based eikonal

solver. Thus, there is no relationship between these two grids. [If we were using ray

tracing instead of FMM to solve the forward problem, then we would not need to define

a propagation grid].

The third line in the above block of parameters defines the source grid refinement

parameters that are used to improve traveltime accuracy. When energy emanates from a

seismic point source, the curvature of the wavefront is very high, which means that the

underlying global propagation grid does not capture its true shape very accurately. It has

been shown that errors that arise from this effect in the source neighbourhood dominate

the total traveltime errors of FMM. In order to mitigate this problem, fm3d defines a

local cubic region of grid points about the source within which a much higher density of

propagation grid points is defined. When the wavefront impinges on the edge of this local

region, traveltimes are mapped back to the coarser global grid. This idea is illustrated

in Figure 4, which shows a schematic cross-section through a locally refined grid. The

refinement factor refers to the number of subdivisions of the global propagation grid; in

Figure 4, this value is 3. The number of local cells refers to the number of cells outward

from the source (in all three dimensions) that the refined region extends. In Figure 4,

this value is also 3. In the above block of parameters from the generic input file, the

refinement factor is set to 5, and the number of local cells is set to 10.

In general, care should be taken in choosing appropriate values for the refined region.

The propagation grid defined above has a dimension of 21×41×41 = 35, 301 nodes. The

refined grid is defined by a total of (50× 2)3 = 1, 000, 000 nodes, which means that most

of the computational effort is taken up by computing traveltimes in the source neighbour-

hood. In general, you will find that using a refinement factor of 5 and a cell number of 5

greatly decreases computing time (125,000 local nodes instead of 1,000,000), and does not

diminish accuracy very much. The final line of the above block of parameters defines a

so-called cushion factor for the propagation grid. This is a rather ad hoc parameter I have

included which makes sure that the propagation grid does not extend outside the actual

17

Figure 4: Schematic diagram showing the use of local grid refinement about the source

in order to improve traveltime accuracy. As soon as the wavefront hits the edge of the

refined grid, it is mapped back onto the coarser global propagation grid.

model bounds. I have found that fm3d can complain if the propagation grid extends

laterally right up to the boundary of the interface surfaces. This value defines by how

much the propagation grid should lie within the horizontal bounds of the model. Set it

to as small a value as possible (if it is too small, fm3d will complain).

3.2.3 Defining the velocity grids

The next step is to set up the velocity grids which define the model. For each layer that

is defined, there are four blocks of parameters that must be repeated. In the generic

example, the first block is:

cc

c Set velocity grid values for layer 1

cc

12 12 c: Number of radial grid points (type 1 & 2)

12 2 c: Number of grid points in theta (N-S)

12 12 c: Number of grid points in phi (E-W)

1 c: Use model (0) or constant gradient (1)

P c: Use P or S velocity model

18

ak135.vel c: Velocity model (option 0)

1 c: Dimension of velocity model (1=1-D,3=3-D)

5.4 4.0 c: Velocity at origin (km/s) (option 1)

7.0 5.0 c: Velocity at maximum depth (km/s) (option 1)

The first line specifies the number of grid points in radius. The reason why there are two

entries is that, as mentioned earlier, it is possible to have both a P-wave velocity field and

an S-wave velocity field independently defined in the same layer. If you specified (second

parameter line in file) that there is only one velocity grid type, then you only have to deal

with the left hand column of numbers. In this case, 12 grid points will span the depth

range of the model volume. The higher you make this number, the greater the detail that

can be described by the model (i.e. it will be able to resolve finer features). In general, it

is good practice to have this number much smaller than the corresponding propagation

grid number, otherwise the propagation grid will poorly represent the true velocity model,

which will introduce traveltime error.

The second and third lines in the above block specify the number of grid points in

latitude and longitude respectively. Note that the velocity grid for any layer actually

spans the entire model volume. This means that there is considerable redundancy in

their definition (unless the model is described by a continuous velocity field i.e. there

is only one layer). However, in practice this does not detrimentally effect computation

time, as only those nodes that lie within the layer are selected. The reason for defining

the model in this way, apart from simplicity, is that during an inversion, interfaces can be

perturbed in depth, in which case it is difficult to know in advance the actual grid extent

that is required. Although 12 nodes in depth, latitude and longitude have been specified

to define the velocities in layer 1, the actual number of nodes is 14, because cushion nodes

are automatically added (see Figure 1). As shown in Figure 2, a minimum of four nodes

in each dimension are required to define a cubic B-spline function, so you cannot specify

less than two grid points. The grid spacing in depth for the above parameter block is 7.4

km.

The remaining lines in the above block are related to the velocity values that are as-

signed to the grid nodes. As indicated on the fourth line, there are two options; to use

a specified model from an external file (option 0), or a simple constant velocity gradient

19

in depth (Option 1). In the former case, you can choose to use either P or S velocities

(as specified on the next line). If you decide to use a velocity model defined in an exter-

nal file, the the name of that external file must be entered on the 6th line. In this case

it is a 1-D velocity model (ak135). An example of how this file should be formatted follows:

-100.000 5.8000 3.4600

0.000 5.8000 3.4600

20.000 5.8000 3.4600

20.000 6.5000 3.8500

35.000 6.5000 3.8500

35.000 8.0400 4.4800

77.500 8.0450 4.4900

120.000 8.0500 4.5000

165.000 8.1750 4.5090

etc.

The first column indicates the depth below the surface, and the second and third columns

indicate the corresponding P and S velocities respectively at these depths. Note that on

the first row, the depth has been set to -100.0 km (i.e. 100 km above the surface); this is

to ensure that cushion boundary nodes (see Figure 1) will always have a value associated

with them. As long as you adhere to the above format, you can introduce whatever 1-D

velocity model you like. Note that it must span the complete depth range of the 3-D

model (including cushion boundary nodes).

If you would like to introduce 3-D velocity variations from an external file, then insert

the file name on line six of this parameter block, and set the value in the line below to

3, to indicate that we are now dealing with a 3-D input velocity model. This file must

have (nvr + 2) × (nvt + 2) × (nvp + 2) entries, where nvr, nvt, and nvp are the number

of velocity nodes in depth, latitude and longitude respectively (nnr = nnt = nnp = 12

in this case). Thus, your input file must in effect specify the complete velocity grid for

this layer, including the boundary nodes. Unfortunately, this requires some effort by the

user to properly grid their velocity field, but it would be very difficult to set up a more

sophisticated input scheme. When the grid is read in by grid3dg, the innermost loop is

20

over longitude and the outmost loop is over radius. The pseudo Fortran code associated

with this process is as follows:

DO i=0,nvr+1

DO j=0,nvt+1

DO k=0,nvp+1

READ velocity value

ENDDO

ENDDO

ENDDO

which means that there is only one velocity value per line. If you choose to read in

S-velocities (i.e. set line 5 to S), then you will need to append a list of S-velocities to the

end of the P-velocities (in exactly the same format). The velocity value at i = j = k = 1

corresponds to the point at the southwest corner of the model region at the base of the

box (i.e. maximum depth).

The final two lines in the above parameter block are only relevant if you chose the

constant velocity gradient option (i.e. set the field in line 4 to 1). The first column

represents velocities for the first velocity field, and the second column represents velocities

for the second velocity field, which are used only if you set the number of velocity grid

types to 2 (see entry two of the input file). The first value on the LHS (5.4 in this case)

refers to the velocity at the top of the model, and the second value on the LHS (7.0 in

this case) refers to the velocity at the bottom of the model. Linear interpolation between

these two values is used to define the complete velocity field.

Once the basic velocity field for a particular layer has been defined, it is possible to

superimpose several different types of laterally varying structures. These options are use-

ful for performing synthetic resolution tests, for example. The first class of structure that

can be superimposed is random velocity perturbations. The input parameter block that

controls this option is:

cc

c Optionally apply random structure to layer 1

21

cc

1 c: Add random structure (0=no,1=yes)

1.5 c: Standard deviation of Gaussian noise

1 c: Add a priori model covariance (0=no,1=yes)?

0.3 c: Diagonal elements of covariance matrix

The first option is a switch which allows the random structure to be turned off (0) or

on (1). The second option specifies the standard deviation of the Gaussian noise that

will be superimposed onto the velocity nodes. The third and fourth options are not

actually associated with the random noise specification. Rather, they allow the diagonal

elements of the a priori covariance matrix to be specified (only as a single constant

value). Essentially, this represents the a priori uncertainty (in km/s) associated with

each parameter value. This estimate is required by the inversion program, so should be

included if you are going to use the model as a starting model for the inversion. The

magnitude of this value is in itself not very significant, as it will trade off against the

damping parameter. However, its value relative to what may be specified for the other

layers and interfaces that are inverted for is significant.

The next parameter block allows a 3-D checkerboard pattern to be superimposed on

the layer velocity field:

cc

c Optionally apply checkerboard to layer 1

cc

0 c: Add checkerboard (0=no,1=yes)

1.5 c: Maximum perturbation of vertices

2 c: Checkerboard size (N×N×N)

1 c: Use spacing (0=no,1=yes)

The first option is a switch which toggles the checkerboard on (1) or off (0). The next

parameter sets the maximum perturbation of the velocity vertices. In this case, each

velocity value will be set to either v + 1.5 km/s or v − 1.5 km/s, where v is the velocity

of the grid node prior to the checkerboard pattern being superimposed. The third option

22

sets the checkerboard size. In this case, N = 2, which means that along any of the

three orthogonal directions, nodes will be perturbed in pairs (i.e. the first two set to

v + 1.5 km/s, the second two to v − 1.5 km/s etc.). Increasing the value of N increases

the size of each checkerboard element. Note that if you set N = 1, the amplitude of

the checkerboard will appear diminished; this is due to the non-interpolating nature of

cubic B-splines. The final parameter is a switch which indicates whether spacing should

be used between adjacent checkerboard elements. This spacing will be of size N . Thus,

rather than switching between positive and negative perturbations, there will be a gap of

N points which remain unperturbed if this switch is set to 1. Again, note that the non-

interpolating nature of cubic B-splines will mean that velocity field will not have exactly

zero perturbation at these points. Turning this switch on results in a lower density

checkerboard pattern.

The final parameter block for layer 1 introduces discrete “spikes” into the model if

they are required:

cc

c Optionally, apply spikes to layer 1

cc

0 c: Apply spikes (0=no,1=yes)

1 c: Number of spikes

2.50 c: Amplitude of spike 1

-15.0 -41.9 141.5 c: Coordinates of spike 1 (depth, lat, long)

The first entry switches the spikes on (1) or off (0). The second entry specifies the number

of spikes. The following pairs of lines (only one in this case as only one spike is specified)

sets the amplitude of the spike (can be positive or negative) and the coordinates of the

spike. If this option is turned on, grid3dg will find the nearest node to each specified

point, and will apply the perturbation indicated. Due to the smooth behaviour of cubic

B-spline functions, the resulting “spike” will not be a delta-like function; rather, it will

be more like a small blob.

Once the properties of the first layer have been defined, the four parameter blocks

shown above must be repeated for each subsequent layer. In the generic input file, there

23

are only two layers, which is why the four parameter blocks are only repeated once. For

M layers, they must be specified M times (and obviously in the correct order - from the

top to the bottom layer).

3.2.4 Defining the interface grids

Once the layer velocity fields have been specified, the next step is to define each of the

interface grids. If M layers have been specified, then there must be M +1 interfaces. The

top and bottom interfaces bound the velocity model; wavefronts may reflect from them,

but they cannot penetrate or transmit through them. The first parameter block sets up

the grid spacing:

cc

12 c: Number of grid points in theta (N-S)

12 c: Number of grid points in phi (E-W)

The first entry is the number of grid nodes in latitude, and the second entry is the number

of grid nodes in longitude. Note that grid3dg automatically adds cushion nodes, so the

total number of nodes defining the interfaces will be 14 × 14 = 196. As stated earlier,

one restriction of fm3d is that the horizontal grid node distribution for each interface

must be the same. The remaining parameter blocks for each interface closely resembles

the parameter blocks used for defining the layer velocities.

For interface 1, the first parameter block is:

cc

c Set up interface grid for interface 1

cc

0 c: Obtain grid from external file (0=no,1=yes)

interface1.z c: External interface grid file (option 1)

1.3 c: Height of NW grid point (option 0)

1.3 c: Height of NE grid point (option 0)

1.3 c: Height of SW grid point (option 0)

24

The first entry specifies whether the interface structure is to be obtained from an external

file or not. If the switch is set to 1, then the interface grid information will be read in

from an external file. As in the case of reading in a 3-D velocity grid, the interface grid

file must have an entry associated with each node (196 in this case), and must include

values for the cushion vertices. The pseudo Fortran code for reading in the external file is

DO i=0,nvt+1

DO j=0,nvp+1

READ interface depth value

ENDDO

ENDDO

which means that there is only one interface depth entry per line. The value at i = j = 1

corresponds to the depth of the surface at the southwestern corner of the model.

If option 0 is chosen, then grid3dg will construct the interface depths from the three

values provided in the third, fourth and fifth entries. These three values are used to define

a plane. If they are all set equal, then the interface will not vary in depth (it won’t be

exactly planar, due to the curvature of the coordinate system). In the above case, the

top surface is set to 1.3 km above the Earth’s surface; note that this is slightly below the

top of the velocity grid, which is set at 1.5 km height (the top surface should always be

just slightly below the top of the velocity grid). By varying these three values, a dipping

plane of arbitrary orientation can be specified. Note that if adjacent interfaces intersect

each other, grid3dg will attempt to apply a correction.

The second, third and fourth parameter blocks have more or less exactly the same

form as the corresponding blocks which define the velocity field. The only real difference

is that we are now dealing with a surface rather than a volume. In this case, the random

structure will be applied to the interface depths. As in the case of the velocity fields, an

estimate of a priori model covariance is required if the model is to be used as an initial

model in a tomographic inversion. Each of the four parameter blocks must be repeated

for each interface, and if there are M layers, there must be M + 1 interfaces (three in

this example). The bottom interface should at least lie slightly above the bottom of the

model.

Once you have edited grid3dg.in to your satisfaction, you can go ahead and execute

25

grid3dg. It will produce three files: vgrids.in, interfaces.in and propgrid.in. These files

must be placed in the same directory that you execute fm3d or tomo3d from.

4 Solving the forward problem with fm3d

fm3d is used to solve the forward problem of traveltime prediction, and also computes the

Fréchet derivatives that are used in the gradient based inversion procedure. A detailed

discussion of how fm3d works will not be given here, as it is a separate stand-alone code

with its own set of instructions (see the file README 0.7 in the subdirectory fmcode/).

The input files required by fm3d are as follows:

• mode set.in: This file sets some basic parameters for fm3d, including whether

to save ray paths, generate OpenDX output files etc. If you look at the default

mode set.in file in source/inputfiles/, you will see that a lengthy explanation of each

entry is given. For use with FMTOMO, I would recommend setting file mode to

false and no pp mode to true. Saving ray paths takes a lot of disk space, especially

for large problems, so don’t do so unless you want to visualize them. If you have

access to a cluster, then you may want to turn on parallel mode. display mode is

only useful if you would like to visualize interfaces and rays using OpenDX. The final

option, save timefields mode, saves specified time fields to file. This may be useful

if you want to perform non-linear hypocenter relocation with your own inversion

code, but is not needed for FMTOMO. Note that if you set this option to true, then

you will also need to provide an additional input file called gridsave.in.

• frechet.in: This file specifies which parameters are to be inverted for, so that fm3d

knows which Fréchet derivatives to compute. If the first entry is set to zero, then no

Fréchet derivatives will be computed. When using fm3d in forward mode, this file

will still be read in by the code. How this file can be created for use with FMTOMO

will be described in the next section.

• interfaces.in: Specifies the structure of all the interfaces that describe the input

model. The generation of this file was discussed in the previous section.

• proppgrid.in: Defines the propagation grid (the sampling of the velocity model)

used by fm3d to evolve the wavefront using finite difference solution of the eikonal

26

equation. The construction of this file was described in the previous section.

• vgrids.in: Specifies the velocity field in each layer of the input model. The gener-

ation of this file was discussed in the previous section.

• receivers.in: Lists all the receiver coordinates and their association with each

source. How one may construct this file will be described later in this instruction

manual.

• sources.in: Lists all the sources and their associated path signatures (the phase

types produced by each source). The construction of this file will be described later.

Once all of these files are present in a given directory, then fm3d can be executed

from the command line. As it runs, fm3d provides quite verbose screen output, which

can be rather hard to follow in real time. If you wish, you can always redirect this output

to file with the appropriate shell command (e.g. fm3d >! filename.txt). The two output

files produced by fm3d that the inversion step requires are:

• arrivals.dat: This file essentially lists all of the source-receiver traveltimes that

have been requested, along with some other information. Refer to the README 0.7

in the subdirectory fmcode/ for more information.

• frechet.dat: Contains all the Fréchet derivatives requested by frechet.in.

When you use FMTOMO to run a tomographic inversion, you do not need to run

fm3d separately, as the tomo3d script will do this for you. However, if you want to

construct a dataset for a synthetic resolution test (for example), then you will need to

run fm3d by itself.

5 Solving the inverse problem with invert3d

The inverse problem involves adjusting the model parameter values (i.e. interface depth,

velocity, hypocenter location) in order to try and satisfy the data observations (source-

receiver traveltimes), subject to any imposed regularization. The program invert3d uses

a subspace inversion method to solve this problem. Subspace inversion is a gradient

based technique, and therefore requires Fréchet derivatives (which fm3d provides). The

27

objective function which invert3d minimizes in order to solve the inverse problem has

the form:

S(m) =
1

2
[Ψ(m) + ǫΦ(m) + ηΩ(m)]

where ǫ is referred to as the damping factor and η as the smoothing factor. The vector m

represents the model vector of unknowns that are adjusted during the inversion process.

The first term on the RHS of the above equation is defined by:

Ψ(m) = (g(m) − dobs)
TC−1

d (g(m) − dobs)

where Cd is a data covariance matrix. Here, g(m) represents the traveltime predictions

associated with the model defined by m. Thus, Ψ(m) is minimized when the model

traveltimes g(m) most closely resemble the observed traveltimes dobs. The data errors

are assumed to be uncorrelated, in which case Cd = [δij(σ
j

d)
2] where σj

d is the uncertainty

of the jth data point.

A common problem with tomographic inversion is that not all model parameters will

be well constrained by the data alone (i.e. the problem may be under-determined or

mixed-determined). To help combat this problem, several regularization terms are added

to the objective function. The first term Φ(m) is defined by

Φ(m) = (m− m0)
TC−1

m (m −m0)

where Cm is an a priori model covariance matrix. Uncertainties in the initial model are

assumed to be uncorrelated, so Cm = [δij(σ
j
m)2] where σj

m is the uncertainty associated

with the jth model parameter of the initial model. The effect of Φ(m) is to encourage

solution models m that are near a reference model m0 (in this case the starting model).

The values used in Cm are usually based on prior information.

Another approach to regularisation is the minimum structure solution which attempts

to find an acceptable trade-off between satisfying the data and finding a model with the

minimum amount of structural variation. This can be implemented by defining Ω(m) as:

Ω(m) = mTDTDm

where Dm is a finite difference estimate of a specified spatial derivative. Here, D is the

second derivative operator, so Ω(m) reduces in size as the model becomes more smooth.

The two tuning parameters in the objective function, ǫ and η, govern the trade-off

between how well the solution mest will satisfy the data, how closely mest is to m0, and

the smoothness of mest.

28

The input parameter file associated with invert3d is invert3d.in, a generic copy of

which can be found in source/inputfiles/:

ccc

c This file contains all required input parameters and files for the

c inversion program ”invert3d.f90”

ccc

vgridsref.in c: Reference velocity grid

vgrids.in c: Current velocity grid

interfacesref.in c: Reference interface grid

interfaces.in c: Current interface grid

sourcesref.in c: Reference source coords

sources.in c: Current source coordinates

stimes.dat c: Current source time perturbations

receivers.in c: Receiver coordinates

otimes.dat c: Observed traveltimes

mtimes.dat c: Model traveltimes

rtimeso.dat c: Reference teleseismic traveltimes

frechet.in c: Frechet derivative parameters

frechet.dat c: Frechet derivatives

inviter.in c: File indicating current inversion step

propgrid.in c: File containing propagation grid parameters

0.07 c: Minimum distance between interfaces (km)

0.5 c: Minimum permitted velocity (km/s)

1 c: Remove mean from predicted teleseisms (0=no,1=yes)

0 1.0 1.0 c: Velocity inversion (0=no,1=yes),damp,smooth

1 0.1 1.0 c: Interface inversion (0=no, 1=yes),damp,smooth

0 1.0 1.0 c: Source inversion (0=no, 1=yes),damp1,damp2

20 c: Subspace dimension (max=50)

1.0 c: Global damping factor (epsilon)

1 c: Apply second derivative smoothing (0=no,1=yes)

1.0 c: Global smoothing factor (eta)

29

6371.0 c: Earth radius in km

The first and third entries of this file specify the initial or starting velocity (vgridsref.in)

and interface grids (interfacesref.in) for the inversion. These can be constructed using

grid3dg (you will have to rename the default output files). After invert3d is executed,

it will write the updated interface and velocity grid files to vgrids.in and interfaces.in. Since

source locations can also be inverted for, invert3d requires a reference source input file

called (sourcesref.in). Updated source locations will be written to sources.in. Note that

all three reference files are required, even if one or more of the parameter types are not

inverted for (i.e. you must provide vgridsref.in, interfacesref.in and sourcesref.in), in which

case the corresponding output file will simply be a copy of the reference input file (e.g. if

you do not invert for source location, then sourcesref.in and sources.in will be identical).

The output file called stimes.dat stores the time perturbations associated with each

source hypocenter that is inverted for. Thus, if invert3d deems that the source origin

time is late by λ seconds, then λ will be written to stimes.dat for that source. This assumes

that the a priori traveltimes are equal to the receiver arrival time minus the a priori origin

time.

The input receivers.in file lists the receiver locations. The vector of observed traveltimes

dobs is given in the file otimes.dat. How this file can be produced from your pick files is

described later. Traveltimes and their associated errors are listed in the same order as the

output traveltime file produced by fm3d (arrivals.dat). The vector of model traveltimes

g(m) is given in the file mtimes.dat. It is simply the file (arrivals.dat) produced by fm3d

for the current model, that has been renamed to mtimes.dat.

The next file, rtimeso.dat, describes the reference model traveltimes for teleseisms. For

teleseismic events, it is assumed that the traveltime information input into otimes.dat is in

the form of arrival time residuals, which are equal to the arrival times minus the predicted

arrival times from a global reference model. In addition, arrival time residuals associated

with each source usually have their means removed, which makes them relative arrival

time residuals. Since fm3d computes the total traveltimes from source to receiver, for

teleseisms, we need a set of predicted reference traveltimes in order to compute model

arrival time residuals. This is provided by rtimeso.dat. By default, tomo3d will produce a

file called rtimes.dat, which represents the traveltimes through the reference model defined

30

by interfacesref.in and vgridsref.in. In many cases, it is o.k. to use this file to provide the

reference model traveltimes. However, if the observed residuals includes a contribution

from topography which has not been accounted for, you may want to create your own

rtimes.dat file (in which case you must relabel it to rtimeso.dat or something so that it

doesn’t get overwritten by tomo3d) which is computed with all station elevations set to

zero. It is acknowledged that this approach to matching observed residuals is perhaps not

the most self-consistent, as it would be best to use the same reference model predictions

for both the observations and the model predictions. In the end, it makes little difference,

but if you want to be technically correct, you could just compute your observed residuals

by using the predictions provided by rtimes.dat.

The next two input files, frechet.in and frechet.dat are the input and output Fréchet

derivative files used by fm3d. inviter.in simply contains one integer which defines the

current iteration number of tomo3d. This is required for housekeeping purposes (it tells

invert3d whether we are dealing with the first or some later iteration). The final file

that is listed, propgrid.in, is the propagation grid file used by fm3d.

Following the list of files, invert3d.in specifies the minimum allowed distance between

adjacent interfaces. This is similar to the specification in grid3dg.in, and limits how

close interfaces can come together. A limit can also be set on the minimum permitted

velocity. Particularly in regions of low velocity (e.g. volcanic caldera or uncompacted wet

sediment), uncertainties in traveltime picks and other factors may result in near zero or

negative velocities, which may cause fm3d to fail (quite understandably so).

The next parameter indicates whether the mean should be removed from the predicted

teleseismic residuals (if they are present) on a source-by-source basis. In most case,

observed residuals have their means removed to account for errors in source location and

broad-scale structure outside the model region. However, removing the mean from the

predicted dataset can often make little difference in this case, because the average vertical

variations in structure are usually preserved when teleseismic data are inverted. When

combined with other classes of data, it may be more necessary to remove the mean from

the model data.

The next three lines allows the user to choose whether to invert for velocity structure,

interface structure and/or source location. In the first two cases, damping and smoothing

factors can be specified for the velocity fields and interface surfaces. If different damping

is needed for different layers and interfaces, then this should be accomplished via the a

31

priori model covariance matrix. The damp1 and damp2 factors associated with the source

inversion refer to the damping of the spatial and temporal locations of the hypocenter

respectively. More refinement as to which velocity, interface and source parameters are

inverted for can be achieved by editing the frechgen.in file. This will be discussed shortly.

The next parameter sets the subspace dimension. Subspace inversion works by re-

stricting the minimization of the quadratic approximation of the objective function S(m)

to an n-dimensional subspace of model space; thus, the perturbation δm is restricted to

occur in the space spanned by a set of n orthogonal basis vectors. In the generic input

file, the subspace dimension is set to 20. Increasing this value can potentially improve

convergence, but at greater computational cost. In practice though, it is difficult to gen-

erate a large number of linearly independent search directions that significantly influence

the objective function, so there is not a lot of point in making this value very large. In

any case, SVD (singular value decomposition) is used to identify basis vectors that are

not independent and discards them anyway. Therefore, you could set n = 50 (maximum

allowed value) and not lose much in computational cost.

The next parameter is described as the “global damping factor”, which is ǫ in our

definition of the objective function. This simply pre-multiplies each of the damping fac-

tors that have been defined separately for the velocity, interface and source inversions.

Likewise, one can set a global smoothing factor, which pre-multiplies the interface and

velocity specific smoothing factors. A separate switch is provided for turning the second

derivative smoothing off and on. Note that the specification of the Earth radius (last line)

should be consistent with previous specifications (e.g. in grid3dg.in).

Although the invert3d.in file allows one to choose whether to invert for velocity struc-

ture, interface geometry, and/or source location, it does not offer the option of only invert-

ing for a subset of, for example, source locations, or velocity layers. This can be achieved

via the frechgen program, which constructs the frechet.in file. The input file used by

frechgen is called frechgen.in, a generic copy of which can be found in source/inputfiles/.

In determining which parameters are to be constrained in the inversion, frechgen actually

consults both invert3d.in and frechgen.in; therefore, frechgen should always be executed

whenever one of the three inversion parameters in invert3d.in is adjusted. The generic

frechgen.in file is constructed as follows:

32

invert3d.in c: Input file for invert3d

frechet.in c: File specifying derivatives for fm3d

vgridsref.in c: File containing reference velocity grid

sourcesref.in c: File containing reference source locations

-1 c: Velocity derivatives (>0=subset, -1=all)

1 c: If all, type 1 (1), type 2 (2) or both (3)

2 c: Indices of velocity grids (if subset chosen)

1 c: Velocity types for inversion (1 or 2)

1 c: Interface derivatives (>0=subset, -1=all)

2 c: Indices of interface grids (if subset chosen)

-1 c: Source derivatives (>0=subset, -1=all)

sourcederivs.in c: File specifying sources for inversion (if subset chosen)

The first entry simply specifies the default input parameter filename of invert3d. The

second entry is the name of the output file produced by frechgen, which becomes the

Fréchet parameter input file to fm3d. The third and fourth files contain the reference

velocity grid and source locations. The next four lines select the velocity fields that are

to be constrained in the inversion. If on line 5, the switch is set to -1, then the velocity

parameters in all of the layers are selected. If a subset of m layers is to be inverted for,

then m should be entered in the place of -1. On line 6, it is possible to specify which type

of velocity field is used. This switch only gets activated if the switch on the line above

is set to -1. If there is only one type of velocity field present (P or S), then this switch

should be set to 1. If both P and S are present, then setting this switch to 1, 2 or 3 will

result in the selection of P, S or both P and S velocity fields respectively.

The next two parameters are activated when only a subset of the velocity fields is

chosen. For example, if for some model, the velocities in layers 2, 3, 5, 6 are to be

inverted for, then m = 4, and line 7 should read 2 3 5 6. Line 8 then lists the

velocity types associated with these four layers that are to be constrained. If there is only

one velocity type present (P or S), then line 8 should read 1 1 1 1 . The specification

for interfaces is similar to that of velocity; the entry on line 9 indicates whether all (-1) or

some subset (m) of the interfaces are to be inverted for. In the latter case, the m interfaces

are listed on the line below. For example, if interfaces 2 and 4 are to be constrained by

33

the inversion, then m = 2 and line 10 should read 2 4.

The final two lines control which sources are relocated. If the second last line is set

to -1, then all sources are selected. Otherwise, a subset of sources, listed in the file

sourcederivs.in will be relocated. The reason that this information is kept in an external

file is that the subset of m sources may be quite large (e.g. 100s). If you do not wish

to edit this file by hand, the programs moddata and obsdata, described in subsequent

sections, gives you the option of generating sourcederivs.in.

The input files invert3d.in and frechgen.in provide a two-level hierarchy for determining

which parameters become unknowns in the inversion. invert3d.in allows you to activate

or deactivate each parameter class. For example, if you do not want to invert for velocity

structure, then set the velocity inversion switch in invert3d.in to 0. This will over-rule any

velocity parameter directive contained in frechgen.in. However, if the velocity inversion

switch is set to 1, then frechgen.in will determine which layers are inverted for. Prior to

running invert3d, the program frechgen should be executed.

Note that the tomo3d script automatically runs frechgen prior to the first iteration,

so all you need to do is make sure that you have edited invert3d.in and frechgen.in to suit

your requirements. In general, when using the FMTOMO package, there should be no

need to run invert3d as a stand alone program, as the tomo3d script will carry out this

step automatically.

When invert3d is executed, it produces very minimal screen output; if it works cor-

rectly, it will generate something like:

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

The first three lines may or may not be produced, depending on whether the SVD or-

thogonalization algorithm identifies any redundant search directions.

34

6 Constructing a tomographic solution model with

tomo3d

tomo3d is a relatively simple shell script that sequentially executes fm3d and invert3d

to iteratively minimize the objective function S(m). Re-running fm3d after each inver-

sion iteration ensures that the non-linearity of the inverse problem is taken into account.

The input file used by tomo3d is called tomo3d.in, a generic copy of which can be found

in source/inputfiles/:

6

0

0

The first entry simply sets the number of inversion iterations that are to be executed. If

this number is set to some value p, then fm3d will be executed p+1 times, and invert3d

will be executed p times. This occurs because fm3d will be executed first (traveltimes

through initial model) and last (traveltimes through final model). If you run the inversion

process for p iterations, and then decide you would like to run it for a set of additional

iterations, then set the second entry to 1. If you do this, then you will need to specify

(line 3) whether tomo3d begins by executing invert3d (option 0) or fm3d (option 1).

In most cases, you should set this to 0, because tomo3d will have computed traveltime

predictions for the previous solution model.

tomo3d can be executed from the command line like any of the other programs. All

of the programs it uses will be executed in the current directory, so the relevant input

files must be present. When tomo3d is executed with line 2 of tomo3d.in set to 0, it will

start off by copying vgridsref.in to vgrids.in, interfacesref.in to interfaces.in and sourcesref.in

to sources.in. It will then create the frechet.in file by executing frechgen. fm3d will

then be run in order to generate traveltimes and Fréchet derivatives for the initial model.

After this has completed, the output arrivals.dat file will be copied to mtimes.dat, and

traveltime residuals for this model will be generated by the program residuals, and

stored in residuals.dat. invert3d and fm3d will then be executed in sequence a total of p

times, with residuals computed at the end of each iteration, and appended to residuals.dat.

35

The generic input file residuals.in (see sources/inputfiles/) for the program residuals

has 5 entries:

otimes.dat c: Observed times

mtimes.dat c: Model times

sourcesref.in c: Source file

rtimeso.dat c: Reference teleseismic times

invert3d.in c: Inversion parameters (indicates if mean is

to be removed from teleseismic

traveltimes)

None of these filenames should be changed, with the possible exception of the entry on

the 4th line. This specifies the reference teleseismic times, which by default is rtimes.dat

(tomo3d will automatically construct this file from the initial model traveltimes). If you

want to use rtimes.dat as computed by tomo3d, then you should edit line 4 accordingly.

When residuals is executed, traveltime residual information is written to screen (tomo3d

redirects this output to residuals.dat). The three values it produces are, in order from left

to right, RMS traveltime residual (in milliseconds), variance (in seconds2), and χ2 (which

is dimensionless).

For most problems, the vast majority of computing time will be taken up running

fm3d; even for problems with large numbers of unknowns, invert3d executes very rapidly.

The verbose screen output generated by fm3d is automatically redirected by tomo3d to

a file called fm3dlog.out. Thus, the only screen output will be generated by invert3d.

Therefore, do not be alarmed when you do not immediately see screen output when you

execute tomo3d; fm3d will have to run first with the initial model before invert3d is

executed and produces screen output.

The input files that must be present in the directory from which you execute tomo3d

are:

• frechet.in

• frechgen.in

• interfacesref.in

36

• invert3d.in

• mode set.in

• otimes.dat

• propgrid.in

• receivers.in

• residuals.in

• sourcesref.in

• tomo3d.in

• vgridsref.in

Two additional files may also be needed:

• rtimeso.dat: Required if reference model teleseismic traveltimes are not computed

from the initial model (filename doesn’t have to be rtimeso.dat in this case). If they

are to be computed from the initial model, then tomo3d will automatically generate

rtimes.dat. Obviously, rtimes.dat or rtimeso.dat are only required if teleseismic data

are considered.

• sourcederivs.in: Required only if a subset of sources are going to be relocated.

7 Data input

The data required by the FMTOMO package in order to produce a solution model from

some given initial model are the two point traveltimes and associated phase information

(path signatures) for a given set of sources and receivers. All of this information is

contained in the three files sourcesref.in, receivers.in and otimes.in. The format of these

files is exactly that of the files sources.in, receivers.in and arrivals.dat respectively, which are

used by fm3d (although we do add a column to sourcesref.in and otimes.in which indicates

the uncertainty associated with source location and traveltime picks). As such, the exact

format of these files will not be described here, as they can be found in the README 0.7

file located in fmcode/. However, before examining two programs for generating these

input files, the concept of path signatures, as used by fm3d, will be explained.

37

7.1 Path signatures

In continuous media, the only type of phase that can be tracked by fm3d is the direct

first arrival. However, when interfaces are present, a wide variety of other phases can be

tracked. At any interface, an impinging wavefront can produce a transmission, a reflection

or a mode conversion (P-S or S-P). When requesting the traveltime between any source

or receiver from fm3d, the associated path signature, which describes the interaction of

the wavefront with any interfaces that are present, must be specified.

Source

Teleseismic
sourceRay ID Path signature

0 1

0 2 2 1

0 2 2 3 3 2 2 1

0 2 2 3 2 1

4 3 3 2 2 1

0 2 2 3 3 4 4 3 3 4 4 3 3 2 2 1

Interface 1

Interface 2

Interface 3

Interface 4

1 2 3 4

2

1

3

4

5

6

5 6

Figure 5: Schematic diagram demonstrating the path signature format used by fm3d to

describe phases. In this case, all receivers lie in layer 1, but this need not be the case in

general.

fm3d expects the path signature to be defined as a string of integer pairs, which

describes the propagation of the wavefront between two interfaces (the multi-stage FMM

tracks wavefronts from one interface to the next; at each interface, the FMM procedure

is reinitialized). When beginning from a point source, the first number will be 0. To

complete the first integer pair, the second number will either be the number of the top or

bottom interface which bounds the layer in which the source resides. For subsequent steps,

38

the first number is the starting interface and the second number is the other bounding

interface. Remember that interfaces are numbered starting at the surface and increase

downwards.

If two equal numbers are entered as an integer pair, then fm3d assumes that a min-

imax phase is requested (a double bounce like PP), and performs reflection matching.

FMTOMO has not been tested with this type of phase. Examples of several different ray

paths and their associated path signature are shown in Figure 5.

7.2 Constructing synthetic datasets with moddata

moddata is a program designed to produce sources.in and receivers.in with relatively

simple input provided by the user. It does not produce an otimes.dat file, and as such,

is best used for purely synthetic tests (e.g. Examples 1 and 2). The main restriction of

this program is that it assumes that a path exists for every source-receiver pair. These

limitations may make you wonder why you would want to use moddata, but it turns out

to be a useful tool for examining what kind of path coverage and hence resolving power

a particular source-receiver configuration may produce. Also, purely synthetic tests like

Example 1 and 2 are interesting in their own right, as they allow one to investigate the

capabilities of the package.

The input file required by moddata is called moddata.in. A generic copy of this pro-

gram can be found in sources/inputfiles/. The first block of this input file contains the

following:

cc

c Input file for generating source and receiver files

c for use by 3D FMM code. Every receiver must

c detect a traveltime from every source.

cc

sources.in c: Output source file

receivers.in c: Output receiver file

sourcederivs.in c: Output source derivative file

arraygen.out c: Input receiver file

2 c: Number of input source files

39

The first two entries specify the source (sources.in) and receiver (receivers.in) files that

will be created by moddata. These files can then be used as input files for fm3d. The

next entry, sourcederivs.in, is the name of the output file that identifies those sources that

are to be inverted for. This file is required by tomo3d if a subset of sources are to be

relocated. The last file on this list is the receiver input file. All this contains is the number

of receivers (top line), and on each subsequent line, the latitude, longitude and depth of

each receiver (negative values are above the surface). For example:

100

-41.70000 138.3000 -1.000000

-41.70000 138.6778 -1.000000

-41.70000 139.0556 -1.000000

-41.70000 139.4333 -1.000000

-41.70000 139.8111 -1.000000

etc.

The last line of the first parameter block specifies the number of input source files (in this

case 2). The reason for having different source files is that it allows you to distinguish

between, for example, local sources (which you may want to relocate), teleseismic sources

and explosive sources. You can specify as many different source files as you like.

The second block of parameters contains the following:

cc

c First input source file and associated path information

cc

sourceswa.in c: Input source file

0 c: Local (0) or teleseismic sources (1)

0 c: Compute source derivatives (0=no, 1=yes)

2 c: Number of paths from these sources

2 c: Number of path segments for path 1

40

c: Path sequence information plus velocity fields below

0 2 2 1

1 1

1 c: Number of path segments for path 2

c: Path sequence information plus velocity fields below

0 1

1

The first entry is the name of the source input file. It has been named sourceswa.in to

indicate that these sources generate wide-angle paths (refractions and wide-angle reflec-

tions from explosive sources). This file has exactly the same format as the receiver file,

except that an additional three column of numbers must be included if the sources are

going to be relocated. For example:

30

-41.50000 138.5000 0.000000 0.2 0.2 10.0

-41.50000 140.0000 0.000000 0.2 0.2 10.0

-41.50000 141.5000 0.000000 0.2 0.2 10.0

-40.50000 138.5000 0.000000 0.2 0.2 10.0

-40.50000 140.0000 0.000000 0.2 0.2 10.0

etc.

Thus, the top number is the number of sources in the file, and the first three numbers from

left to right give the latitude, longitude and depth (negative is above the surface) of each

source. The last three numbers of each row specify the a priori uncertainty associated

with the latitude, longitude and depth of each source respectively. In the case of active

sources which don’t need to be relocated, the last three column of numbers will be ignored.

The second entry in the parameter block is a switch which indicates whether we are

dealing with local (0) or teleseismic (1) sources. Local sources must lie within the model

volume, while teleseismic sources must lie outside the model volume. If teleseismic sources

are specified, then the input source file has a slightly different format: on the line below

each source location, the phase type must be specified (e.g. P, ScP, PP, PKiKP etc.).

41

Note that this is not related to the path signature specification discussed above, because

these phases are tracked to the edge of the model region prior to the implementation of

FMM. An example of a source file for teleseisms is given below:

12

-33.00 80.00000 33.0000

P

-13.0 190.0000 33.0000

P

-30.0 180.0000 33.0000

PcP

10.0 100.0000 33.0000

P

etc.

a priori source uncertainty estimates are not required in the case of teleseismic events,

because they cannot be relocated.

The third entry of the second parameter block indicates whether source derivatives

should be computed. If this is set to 1, then the i.d. of all the sources in this file are

written to sourcederivs.in. Thus, if only a subset of sources are relocated, then this output

file can be used with frechgen.in.

The fourth entry indicates the number of paths that are to be tracked from these

sources. You can use any number you like; for q path types, the four input lines following

the specification of q on line 4 must be repeated q times. In this case, there are two

path types, so 8 lines follow. For each path type, the number of path segments must be

specified. The first path contains two segments, the path signature of which is given by

0 2 2 1, which corresponds to a simple reflection if the source lies in layer 1. For

each ray segment, the velocity type must be specified in the line below. If the velocity

model only specifies one type of velocity (P or S) within the relevant layer, then this should

be set to 1. Mode conversions can be obtained by setting consecutive entries to different

values (e.g. [1 2] gives a P-S conversion, and [2 1] gives an S-P conversion) provided

two velocity fields have been defined for the corresponding layers. For p path segments,

42

the path sequence must contain p pairs of integers, and the velocity field specification

must contain p integers. The second parameter block must be repeated for every input

source file that is specified.

When moddata is executed, it will produce sources.in, receivers.in and optionally sourced-

erivs.in. These can then be copied to the directory from which tomo3d is to be run.

A very simple program called arraygen has been provided which generates a square

grid of evenly spaced sources or receiver locations. A generic input file arraygen.in can be

found in sources/inputfiles/:

arraygen.out c: Output file name

-32.0 -34.0 c: N-S bounds of grid

138.5 141.5 c: W-E bounds of grid

0.0 c: Depth of receiver grid

10 10 c: Number of receivers in lat and long

The first entry is the name of the output receiver (or source) file. The next two entries

specifies the horizontal bounds of the square grid of points that will be generated. The

fourth entry specifies the depth of the point (negative is above the surface), and the last

entry specifies the number of points in latitude and longitude (10 × 10 = 100 points in

total). Although of limited value, arraygen may be of some use if you want to span a

region with a rectangular array of receivers, for example.

7.3 Including observational data with obsdata

Although moddata is useful in some cases, generally one wants to convert their database

of picked traveltimes into a format suitable for input into FMTOMO. The program ob-

sdata offers one possible route for achieving this. In many ways obsdata is similar to

moddata, but has some additional flexibility built in. The input file to obsdata is called

obsdata.in, a generic version of which can be found in sources/inputfiles/. The basic format

of this file is the same as moddata.in, with the exception of the first parameter block:

cc

43

c Input file for generating source and receiver files

c for use by 3D FMM code. Will also generate traveltime

c file if required.

cc

sources.in c: Output source file

receivers.in c: Output receiver file

sourcederivs.in c: Output source derivative file

picks/ c: Directory containing input receiver files

2 c: Number of input source files

1 c: Extract traveltimes (0=no, 1=yes)

otimes.dat c: File containing extracted traveltimes

The fourth entry specifies a subdirectory which contains all of the receiver input files

(which contain traveltimes measured from recordings at each receiver). The format of

these files will be described below. The last two entries are related to constructing a

list of observed traveltimes. If the traveltime extraction specification is set to 1, then all

traveltimes will be read in from the files contained in picks/ and written to otimes.dat.

This file can then be used as the input to tomo3d.

The input source files read in by obsdata have a very different format to those read

in by moddata. An example of an input file containing local sources (explosions for

wide-angle data) is given below:

16

-41.742333 145.093333 -0.200

1

1 1 pick04.9pm

-41.195666 144.818667 -0.139

3

1 1 pick05.8pm

1 1 pick05.9pm

3 2 pick05.8pg

etc.

44

The first line contains the number of sources. For each source, the coordinates are given

as latitude, longitude and depth in km (negative values are above the surface). For a

particular source, the number of associated pick files are then specified. In the above

example, source 1 has one pick file, and source 2 has three pick files. Following this

specification, the name of each pick file is listed below. These pick files must be located in

the subdirectory picks/, which is specified in entry 4 of obsdata.in. In each row containing

the name of a pick file, the filename is preceeded by two integers. The first integer specifies

which path from the source these picks are associated with. This information is provided

in obsdata.in (the “number of paths from these sources” entry associated with each source

input file). In the above example, at least 3 path types must have been defined for this

source file, because the third pick file of source 2 is associated with path type 3. In the

generic obsdata.in file described above, the first path is a PmP phase, the second a Pn

phase, and the third a Pg phase. You can see that the pick file name extensions given

above correspond to these phases. The second integer simply indicates that, of the total

number of different phase types for a particular source, where a particular pick file sits on

this list. For example, source 2 has two out of a possible three phase types, and although

the third pick file corresponds to path type 3, it is only the second type of phase for this

source.

As pointed out in the previous section, if source relocation is to be carried out, then

the input source file must contain uncertainty estimates for each source coordinate. These

values are appended to each source location. For example, if a local earthquake source

has an initial location at, say, (42±0.2◦ S, 140±0.2◦ W, 33±20 km depth), the source line

would be entered as:

-42.0 220.0 33.0 0.2 0.2 20.0

where the last three entries represent the uncertainty in latitude (in degrees), longitude

(also in degrees), and depth (in km) respectively.

The format of the traveltime pick files for local sources is relatively simple, as shown

in the example below:

45

22

-42.5010778 148.304078 0. 15.6749245 0.117747625

-42.4852975 148.315989 0. 15.9046817 0.130464375

-42.4718477 148.327002 0. 16.1281673 0.141703125

-42.4550508 148.342275 0. 16.3976353 0.11687775

-42.4419621 148.354095 0. 16.599588 0.12822025

-42.4276707 148.366749 0. 16.8457135 0.119055

-42.4138321 148.379216 0. 17.0651105 0.115553

etc.

The first entry specifies the number of picks contained in the file. This is followed by a

traveltime pick list. From left to right, each line contains the receiver coordinate corre-

sponding to the pick (latitude, longitude, depth), the picked traveltime (in seconds), and

some estimate of uncertainty associated with the pick (also in seconds).

When teleseismic sources are used instead of local sources, the format of both the

input source file and the traveltime pick file is slightly different. An example input source

file for teleseisms is given below:

110

1 1 ts0761933.ttr

1 1 ts0762143.ttr

1 1 ts0772224.ttr

1 1 ts0782214ScP.ttr

1 1 ts0782214.ttr

1 1 ts0810910.ttr

1 1 ts0810922.ttr

etc.

The difference between this file and the example input file for local sources given above

is that the source location is not specified. This is because the teleseismic source location

has been included in the associated pick file. An example pick file for teleseismic events

46

is given below:

64

-20.52 162.18 33.

P

-40.9743 145.1336 -0.166 -0.16640625 0.0754

-41.0399 145.2852 -0.276 -0.11640625 0.0616

-41.094 145.4457 -0.278 -0.06640625 0.0488

-41.1135 145.6235 -0.307 0.03359375 0.0908

-41.1899 145.7724 -0.289 0.08359375 0.0479

-41.246 145.893 -0.397 -0.01640625 0.0623

-41.3242 146.097 -0.45 -0.06640625 0.0634

etc.

The first line of this file specifies the number of teleseismic picks associated with this

source. The second line gives the teleseismic source coordinate. Note that you cannot

relocate teleseismic sources, so there is no need to include uncertainty estimates. The

third line specifies the global phase associated with the picks. Most common phase types

can be used (e.g. P, PP, ScP, PcP, PKiKP etc.). The list of entries that follow provides the

pick information for each receiver in the form of the location (latitude, longitude, depth

[negative values are above the surface]), the associated traveltime residual (in seconds),

and an uncertainty estimate. Note that in most cases, the mean will have been removed

from the traveltime residuals on a source by source basis.

7.4 Generating a synthetic traveltime dataset

In some cases, it is desirable to generate a synthetic traveltime dataset (e.g. for a checker-

board resolution test). This is relatively simple to do once all of the necessary input

files for fm3d (i.e. mode set.in, frechet.in, interfaces.in, propgrid.in, vgrids.in, receivers.in,

sources.in) have been constructed. For a given synthetic model, executing fm3d in the

directory containing these files will produce a file called arrivals.dat. This basically com-

prises the synthetic dataset, but a minimal amount of processing is required prior to it

being copied to otimes.dat where it can be used to constrain a tomographic inversion. At

47

the very least, for local sources, some estimate of error needs to be included with each

traveltime. For teleseismic sources, the two-point traveltime needs to be reduced to a

teleseismic arrival time residual. It is also common practice to infect synthetic datasets

with random noise in order to make them more realistic (since any observational dataset

will contain noise).

A program called synthdata is provided with the FMTOMO distribution to help ac-

complish all of these tasks. A generic input file (synthdata.in) is located in source/inputfiles/,

and contains the following list of parameters:

../syntimes.dat c: Input observed times

0.1 c: Data covariance (s)

otimes.dat c: Output file

../sourcesref.in c: Source file

../rtimes.dat c: Reference teleseismic times

0.0 c: DC offset to traveltimes

1 c: Add noise to synthetic times (0=no,1=yes)

0.100 c: Standard deviation of added noise (local)

0.077 c: Standard deviation of added noise (teleseismic)

1 c: Weight with standard deviation (1) or noise (2)

99827374 c: Random seed for noise generation

The first entry names the file containing the synthetic traveltimes. In this example, the

output arrivals.dat file from fm3d has simply been renamed to syntimes.dat. The second

entry is a constant data covariance value that will be associated with each traveltime pick

if random noise is not added to the data. The third entry is the output filename containing

the synthetic “observed” traveltime dataset. This can be used as input to FMTOMO. The

fourth line specifies the current sourcesref.in file, and the fifth line specifies the reference

teleseismic traveltime file (only needed if teleseisms are present). This can be generated

by running fm3d with your reference model. Currently, the mean is not removed from

the residuals. The sixth line allows you to add a constant DC (positive or negative) offset

to the traveltimes. This should only be set to a non-zero value if you are dealing with

a synthetic local earthquake dataset, and want to test the accuracy of the hypocenter

48

relocation in time as well as space.

The entry on the seventh line is a switch which allows you to add Gaussian noise

to the synthetic dataset. The two lines below let you set the standard deviation of the

noise (in seconds) for local and teleseismic sources. On the second last line is a switch

which toggles between using the standard deviation of the added noise as the uncertainty

associated with each traveltime pick (option 1), or the actual noise value that is added

to the pick (option 2). The last line is simply a random seed (integer) which initializes

the noise generation. When synthdata is executed in the presence of synthdata.in, it will

produce the file otimes.dat.

8 Plotting the output

An important step in analysing the results of a tomographic inversion is visualization of

the solution model. When dealing with 3-D models, this is not a simple task. These days,

however, there are many sophisticated software packages for performing 3-D visualization

that can be used. As note earlier, fm3d has the option of producing files in OpenDX

format. These files allow sources, receivers, rays and interfaces to be visualized, but not

velocity variations. Given that OpenDX is capable of volume visualization, this could

be accomplished quite readily. However, the FMTOMO package has taken the simpler

route of providing a program which can take a variety of cross-sections through a 3-D

model and output the result in a format that can be read in by GMT. The Generic

Mapping Tool is a flexible script-based plotting program that has the dual advantage of

being almost ubiquitous in the Earth Sciences community, and producing high quality

PostScript output suitable for publication.

Please note that you must have at least a basic working knowledge of GMT in order

to use the plotting scripts provided with this distribution.

8.1 Producing GMT output with gmtslice

gmtslice is a Fortran 90 program that is capable of taking slices through a 3-D model

in fm3d format (as defined by the files interfaces.in and vgrids.in), and producing output

in GMT format. It can also project the ray paths, sources and receivers onto the slices

that are chosen. In order to run gmtslice, you will need an input file called gmtslice.in,

49

a generic copy of which can be found in sources/inputfile/. The first parameter block of

this file contains the following:

cc

c Input file names

cc

../vgrids.in c: Inversion model velocity vertices

../vgridsref.in c: Reference model velocity vertices

../interfaces.in c: Inversion model interface vertices

../interfacesref.in c: Reference model interface vertices

6371.0 c: Earth radius (km)

0 c: Generate P(0) or S(1) velocities

The first entry in this block specifies the inversion model velocity grid file (or any velocity

model you may wish to visualize). For example, if you have executed tomo3d and wish

to visualize the result, then the name entered here should be the vgrids.in file located in

the directory from which tomo3d was executed. The second entry is a reference vgrids.in

file; this file is only used if you specify later on in gmtslice.in that you want to visualize

velocity perturbations rather than absolute velocity. The corresponding interface grid

files are listed below the velocity grid files; again, it is possible to plot perturbations

in interface depth rather than absolute interface depth, which is why interfacesref.in is

include. The fifth entry is simply the Earth radius, and the final entry lets you choose

between P or S velocity. This should only be set to 1 if both P and S velocity grids are

present in vgrids.in and you wish to visualize P velocity rather than S. If only S velocities

are available in vgrids.in, then this option should still be set to 0.

The second parameter block of the input file contains:

cc

c Set parameters for plotting ray paths if required

cc

1 c: Generate raypaths (0=no, 1=yes)

../rays.dat c: File containing raypaths

50

raysd.xy c: File name for depth projection

raysew.xy c: File name for EW projection

raysns.xy c: File name for NS projection

raysgc.xy c: File name for GC projection

30 c: Plot every nth ray point

The first entry is a switch which gives you the option of generating raypaths. The second

entry is the name of the raypath output file generated by fm3d. You will need to make

sure that mode set.in is correctly set up to generate this file if you want to visualize ray

paths. The next four lines provide output file names for ray paths that are projected

in one of four ways. The first projection (raysd.xy) is simply a depth projection (rays

vary in longitude and latitude but not depth); the second (raysew.xy) is an east-west

projection (rays vary in longitude and depth but not latitude); the third (raysns.xy) is a

north-south projection (rays vary in latitude and depth but not longitude); and the final

file (raysgc.xy) contains rays that have been projected onto a great circle slice. Note that

in the last option, each point along the raypath is projected onto the closest point along

the great circle slice. All of these files are simple ASCII text files, but list the rays in a

format that GMT can interpret. The final option in the above block of parameters sets

the resampling level of the ray path, which is described by a set of points. fm3d typically

describes each ray path using a high density of points; for plotting purposes, it is often

not necessary to try and interpolate every point. In the above example, gmtslice will

simply describe the ray by taking every n = 30th point. When a large number of rays are

present, it is a good idea to undersample the raypaths, otherwise the resulting postscript

file will be very large.

The third parameter block of the input file contains:

cc

c Set parameters for plotting sources and receivers

cc

1 c: Generate sources & receivers (0=no, 1=yes)

../sources.in c: File containing sources

../receivers.in c: File containing receivers

51

sourcesd.xy c: Output source file for depth projection

sourcesew.xy c: Output source file for EW projection

sourcesns.xy c: Output source file for NS projection

sourcesgc.xy c: Output source file for GC projection

receiversd.xy c: Output receiver file for depth projection

receiversew.xy c: Output receiver file for EW projection

receiversns.xy c: Output receiver file for NS projection

receiversgc.xy c: Output receiver file for GC projection

The first entry sets the option of whether or not to produce source and receiver files

for plotting with GMT. The second two entries correspond to the source and receiver

input files used by fm3d, which contain all of the necessary location information. The

following block of 8 files lists the output source and receiver files in GMT format for the

four different projections (same as for the ray projections).

The next block of parameters set the slice parameters:

ccc

c Slice parameters

ccc

1 c: Extract depth slice? (0=no, 1=yes)

-1.0 c: Depth of slice (km)

bounddp.gmt c: GMT plotting bounds for depth slice

contint.d c: GMT depth contouring file

1 c: Extract N-S slice? (0=no, 1=yes)

244.90 c: Longitude of slice (degrees)

boundns.gmt c: GMT plotting bounds for N-S slice

1 c: Extract E-W slice? (0=no, 1=yes)

36.25 c: Latitude of slice (degrees)

boundew.gmt c: GMT plotting bounds for E-W slice

1 c: Extract great circle slice? (0=no,1=yes)

36.30 244.75 c: Lat,Long of first GC point

36.10 245.15 c: Lat,Long of second GC point

boundgc.gmt c: GMT plotting bounds for great circle slice

52

There are four separate sets of specifications relating to depth, east-west, north-south

and great circle slices. The first slice option specifies whether or not to take a depth

slice (i.e. a horizontal section). The depth of this slice then needs to be specified (here,

negative values are below the surface). The next entry, bounddp.gmt is the name of an

output file containing the plotting boundaries that are needed by GMT. These values will

automatically be read into the scripts provided. The final entry for the depth slice is the

name of an output contour file that contains the value of the depth slice. This will be

used by GMT to contour any interface that passes through this depth.

The next set of parameters relate to taking a north-south slice (in which case the

longitude of the slice is specified) and an east-west slice (in which case the latitude of the

slice is specified). The final four entries specify the great circle slice, which can be taken

between any two points in the model region. Thus, two sets of latitude and longitude

coordinates are required. Note that if two points of common longitude are chosen, then

the resulting slice will be equivalent to a north-south slice, which is also a great-circle

slice. However, if two points of common latitude are chosen, then the great circle slice

will not be equivalent (except at the equator) to an east-west slice, which is a slice of

common latitude. It is also important to note that the manner in which ray paths and

points (sources and receivers) are projected onto the great circle slice differ from the

way in which they are projected onto the north-south slice. In the latter case, points

are projected back along lines of constant latitude, and in the former case, points are

projected back along great circle paths to the nearest point on the slice. As a result, it is

not often the case that great circle slices should exactly resemble north-south or east-west

slices.

Following on from setting the slice parameters, the next step is to set the resolution

of the plotted velocity grid:

ccc

c Velocity grid parameters

ccc

1 c: 0=absolute, 1=relative velocity

10 10 c: Dicing in theta,phi

53

grid2dvd.z c: GMT output file for depth slice

10 10 c: Dicing in r,theta

grid2dvns.z c: GMT output file for N-S slice

10 10 c: Dicing in r,phi

grid2dvew.z c: GMT output file for E-W slice

300 30 c: Total number of GC points (horizontal, vertical)

grid2dvgc.z c: GMT output file for great circle slice

The first setting indicates whether or not absolute or relative velocities are to be plotted

(in the latter case, a reference velocity model must be properly specified in the second

entry of the file). This is followed by four sets of options, corresponding to the depth,

north-south, east-west and great circle slice. In the first three cases, a dicing factor is set

for the two orthogonal coordinates. When GMT plots the velocity variations, a colour

contour representation is used, which is composed of a large number of constant colour

pixels. Thus, the “smoothness” of the colour variation will depend on the size of the

pixels. The dicing settings in the above parameter block determine how many pixels each

of the velocity grid cells will be divided into. Here, a velocity grid cell is defined as the

area bounded by two pairs of consecutive nodes (in two orthogonal directions) defined in

vgrids.in. Thus, in the above case, each horizontal grid cell will be described by 100 pixels.

For example, if a velocity model is defined using a grid of 12 by 12 nodes horizontally (not

including the cushion nodes), then setting dicing factors to 10 in both θ and φ will result

in the depth slice being described by a total of (11× 10+ 1)2 = 12, 321 pixels. Therefore,

increasing the size of a dicing factor will result in an increased resolution of the plot in the

corresponding direction. The obvious trade-off, however, is that the file size will increase.

For the great circle slice, the total number of pixels in the horizontal and vertical

directions must instead be specified. This is because the great circle can span the region

between any arbitrary pair of points that lie within the model. In the above case, the

great circle slice will be described by a total of 300 × 30 = 9, 000 pixels. In addition to

the dicing factor, the name of the output GMT grid file (.z file in ASCII format) must

be specified for each of the slices. These files will then be converted to binary .grd files

by the GMT scripts provided.

The second last block of parameters simply specifies the output names of the interface

54

line files corresponding to each of the three vertical slices (north-south, east-west, and

great-circle). These files enable the interfaces to be explicitly superimposed on top of the

velocity cross-sections. In the generic input file, these files are names as followed:

ccc

c Interface grid parameters

ccc

intns.xy c: GMT output file for N-S slice

intew.xy c: GMT output file for E-W slice

intgc.xy c: GMT output file for GC slice

The final block of parameters are related to contour plots of specific interface surfaces:

cc

cc

c Set parameters for contour plots of interfaces

cc

cc

0 c: 0=absolute, 1=relative depth

1 c: Number of interfaces to plot

10 10 c: Dicing in theta,phi

boundsint.gmt c: GMT plotting bounds for surface

2 c: ID of first interface to plot

gridint1.z c: GMT output file

2 c: ID of second interface to plot

gridint2.z c: GMT output file

The first entry determines whether you want to plot the absolute or relative depths of

the interfaces (in the latter case, the interfacesref.in file specified near the beginning of

the input file must point to the appropriate reference interface depths). The second entry

indicates how many separate GMT interface files are to be generated. The plotting script

55

provided can only plot one interface at a time. If you decide to generate more than one of

these files, then you will need to edit this script (called plotint) in order to select which

interface to visualize. The third entry specifies the dicing factor that is used to pixelate

the interface. This works in a way that is exactly analogous to the velocity case. The

fourth entry is the output GMT plotting bounds file which is used by the corresponding

GMT script to set the dimensions of the plotting box. The number of entries that follow

depends on the number of interfaces you have decided to generate for plotting purposes.

For each entry pair, you need to specify the ID of the interface to be plotted (1 = top

interface, m + 1 = bottom interface in a model with m layers), and the corresponding

GMT ASCII grid filename.

Once you have set up the gmtslice.in file, you simply need to execute gmtslice in the

same directory to generate all of the GMT output files.

8.2 Using the GMT plotting scripts

Five generic GMT plotting scripts have been provided in gmtfiles/, and must be executed

in the directory that contains all of the output files produced by gmtslice. plotd will plot

a depth slice (horizontal section). Before running this script, make sure that the projection

option is correctly set. By default, a Lambert conic projection is used. The output file

produced by this script will be called gmtslice.ps. You will need some understanding of

shell scripts and GMT to adjust this script to your liking. Note that a colour palette

file is also needed as input; you will have to provide this yourself (or modify one of those

included with any of the three examples provided with the distribution). By adding and

removing the comment command (#) to executables in the script, you can specify which

components of the output produced by gmtslice will be plotted.

Three of the remaining four scripts, plotew, plotgc, and plotns will generate east-

west, great-circle, and north-south slices respectively. By default, the horizontal axis of

plotew and plotns is in degrees; in the case of plotgc, it is in km. The final script,

plotint, produces a contour plot showing the depth variations of a specific interface. All

of these scripts have a similar structure to plotd, and can be edited in a similar way.

Note that all of these files by default generate a postscript file called gmtslice.ps; if you

find this confusing or annoying, then simply change the output file name specification in

each of the scripts. In order to get a better understanding of how these plotting scripts

56

can be used, you are advised to closely examine each of the three examples provided.

9 Examples

A set of three examples are provided with the FMTOMO distribution. The first two

examples are purely synthetic, but the final example uses observational data. Before

trying to use the FMTOMO package with your own data, you are strongly advised to

examine these examples and test whether your compilation of the code produces the

correct output.

9.1 Example 1: Hypocenter relocation

.

All the files relating to Example 1 can be found in the subdirectory example1/. This

is a relatively straightforward application of the FMTOMO package which attempts to

relocate five local earthquakes in the presence of significant lateral variations in structure.

Example 1 corresponds to the Earthquake relocation application presented in the following

paper:

• Rawlinson, N., de Kool, M. and Sambridge, M., 2006. Seismic wavefront track-

ing in 3-D heterogeneous media: applications with multiple data classes. Explor.

Geophys., 37, 322-330.

You should be able to recreate the plots in Figure 6 of this paper using the input files

provided.

If you enter the example1/ directory, you should be able to execute tomo3d without

needing to edit anything. With its current settings, tomo3d will perform six inversion

iterations, and should end up correctly relocating the five sources into a cross configuration

within a plane of constant latitude (see Figure 6 in this document). Note that the locations

will not be exactly the same as in Figure 6 of the paper. This is because the propgrid.in

file has been modified to make the example run faster. Originally, the last line of the

the propgrid.in file was set to [5 10]; in other words, the refined grid about each source

contained 106 grid nodes. This setting produced the result that you can see in Figure 6 of

the paper. In the propgrid.in file provided, the last line now reads [5 5], which means that

the refined source grid now only contains 125,000 points. Although traveltime accuracy

57

−80

−60

−40

−20

0

−80

−60

−40

−20

0

140.0 140.5 141.0 141.5 142.0 142.5 143.0

140.0 140.5 141.0 141.5 142.0 142.5 143.0
4 5 6 7 8 9

−80

−60

−40

−20

0

−80

−60

−40

−20

0

140.0 140.5 141.0 141.5 142.0 142.5 143.0

140.0 140.5 141.0 141.5 142.0 142.5 143.0
4 5 6 7 8 9

v(km/s)
Relocated hypocenters

D
ep

th
 (

km
)

Longitude

v(km/s)
Initial hypocenter locations

D
ep

th
 (

km
)

Figure 6: East-west cross-sections showing the projected locations of the five hypocenters

for the initial model (top) and the final model (bottom).

will now be decreased, the computing time is much improved. With the smaller refined

grid, the computing time of tomo3d on a Linux workstation with a 1.6 GHz AMD

Opteron CPU is about 3 minutes. This compares to 15 minutes when the larger source

grid is used. Comparison of Figure 6 in this document with Figure 6 of the paper shows

that the increased accuracy of the relocation in the latter case is barely detectable, and

does not really justify the additional computing time.

When tomo3d is successfully completed, you should get the following information

written to screen:

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

58

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

Due to redundancy, the subspace dimension

is being reduced from 20 to 15

Message from SVD orthogonalization algorithm

PROGRAM invert successfully completed!!

The residuals.dat file should contain the following list of numbers (allow for some slight

variation due to the use of different machine architecture and compilers):

2174.77 4.73971 472.96066

1052.36 1.10978 110.74583

378.22 0.14335 14.30517

309.36 0.09590 9.57022

312.90 0.09811 9.79057

312.92 0.09812 9.79188

59

311.69 0.09736 9.71515

Thus, the RMS traveltime residual (left column) has been reduced from 2.1 seconds to

0.3 seconds. Increasing the density of the propagation grid and the size of the refined

source grid will reduce the final number, but even with no traveltime error, the residual

is unlikely to reduce to zero.

The file stimes.dat contains the origin time perturbations associated with each of the

five sources. This should read:

5

-0.2874952

-0.2921612

-0.2727162

-0.3408791

-0.3534153

The origin time of all sources was perturbed by +0.25 s using the program synthdata.

Thus, if the relocation of each source was perfect in time, then each entry of stimes.dat

should read −0.25 s. Again, increasing the density of the propagation grid will improve

the accuracy of these times slightly.

The synthetic model and traveltime dataset used in this example was generated using

the input files contained in example1/mkmodel. The 3-D heterogeneous model is based on

the grid3dg.in file, and the source and receiver files are based on the moddata.in file. The

array of 100 receivers was generated using arraygen with the arraygen.in file provided.

In order to obtain the synthetic traveltime dataset, fm3d was run using the true source

locations in the presence of the 3-D velocity model. synthdata was then executed using

the synthdata.in file to produce otimes.dat. The sourcesle.in file specifies the true source

locations. The sources.in file produced by moddata was then copied to sourcestrue.in in

example1/. The sourcesref.in file was created by simply perturbing the source locations in

sourcestrue.in.

The subdirectory example1/gmtplot/ contains the files needed to produce slices through

the 3-D model using GMT. If you execute gmtslice in this directory, you will produce

60

all of the necessary GMT input files for plotting various sections, based on the values

provided in gmtslice.in. Try editing and executing several of the plotting scripts to see if

you can reproduce the plots contained in Figure 6 of the paper.

9.2 Example 2: Inversion for interface and velocity structure

All of the necessary input files relating to Example 2 can be found in the subdirectory

example2/. In this application, reflection, refraction and teleseismic arrival time residuals

are jointly inverted for 3-D velocity and interface structure. As in the previous example,

the dataset used for the inversion is purely synthetic. Example 2 corresponds to the “Joint

inversion of wide-angle and teleseismic traveltimes” example in the paper:

• Rawlinson, N., de Kool, M. and Sambridge, M., 2006. Seismic wavefront track-

ing in 3-D heterogeneous media: applications with multiple data classes. Explor.

Geophys., 37, 322-330.

You should be able to recreate the plots in Figure 7 of this paper using the input files

provided.

The format of this example is similar to Example 1, which means that you can enter

example2/ and execute tomo3d without modifying any files. However, note that you

now require the machine dependent binary files ak135.hed and ak135.tbl in this directory

in order to track the teleseismic phases outside the 3-D model region. These files are

produced when you execute compileall in the code compilation stage (see Section 2);

make sure that you copy them to the example2/ directory prior to executing tomo3d

in this case. With the tomo.in file provided, six inversion iterations will be performed.

The synthetic dataset was generated using a two-layer model (nominally a crust over a

mantle half-space), with a higher resolution velocity grid used in the crustal layer. The

background velocity within the model varies with depth, but a checkerboard pattern of

amplitude 0.8 km/s is added. The interface surface varies in depth between 33 km and

47 km. These lateral perturbations in seismic structure were created using grid3dg

with the velocity field checkerboard option turned on for both layers, and the random

structure generator turned on for interface 2 only. The starting model, described in the

files vgridsref.in and interfacesref.in, was created using the same grid3dg.in file, but with

the checkerboard and random interface structure options turned off. Note that when

61

synthdata was used to convert arrivals.in (produced by fm3d with the checkerboard

model) into otimes.dat, random data noise was not added.

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−39˚ −39˚

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−100

−80

−60

−40

−20

0

−100

−80

−60

−40

−20

0

−42.0 −41.5 −41.0 −40.5 −40.0 −39.5 −39.0

−42.0 −41.5 −41.0 −40.5 −40.0 −39.5 −39.0
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−39˚ −39˚

−45 −40 −35

−100

−80

−60

−40

−20

0

−100

−80

−60

−40

−20

0

138.0 138.5 139.0 139.5 140.0 140.5 141.0 141.5 142.0

138.0 138.5 139.0 139.5 140.0 140.5 141.0 141.5 142.0
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−39˚ −39˚

−45 −40 −35

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−39˚ −39˚

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−100

−80

−60

−40

−20

0

−100

−80

−60

−40

−20

0

−42.0 −41.5 −41.0 −40.5 −40.0 −39.5 −39.0

−42.0 −41.5 −41.0 −40.5 −40.0 −39.5 −39.0
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−100

−80

−60

−40

−20

0

−100

−80

−60

−40

−20

0

138.0 138.5 139.0 139.5 140.0 140.5 141.0 141.5 142.0

138.0 138.5 139.0 139.5 140.0 140.5 141.0 141.5 142.0
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

V (km/s)pδ

V (km/s)pδ

V (km/s)pδ

V (km/s)pδ

Depth (km)

Longitude

Latitude

V (km/s)pδ

Depth (km)

Longitude

Latitude

D
ep

th
 (

km
)

D
ep

th
 (

km
)

V (km/s)pδ

20 km

Moho

40.25 S

140.25 E

20 km

Moho

140.25 E

40.25 S

Recovered modelTrue model

A’

B

B’

A

B B’

A A’

A’

B

B’

A

B B’

A A’

Figure 7: Velocity and interface structure of the synthetic model (left column) and the

recovered model (right column), obtained after six iterations of tomo3d. Colour contour

images of the Moho surface are shown in the bottom plots.

The execution time of tomo3d using the default input files provided is 24 minutes

on a Linux workstation with a 1.6 GHz AMD Opteron CPU. Note that, like Example 1,

62

fm3d uses a refined source grid comprising 125,000 points (as defined on the last line of

the propgrid.in file), rather than the 1,000,000 points used to produce the results in the

paper. It turns out that the improvements in the reconstruction achieved by using the

larger source grid are extremely minor, and are not justified by the significant increase in

CPU time that is required. Once tomo3d has finished, the following output should have

been written to screen:

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

which indicates that the six iterations have been successfully completed. Unlike Example

1, the SVD algorithm did not have to reduce the number of orthogonal search directions

in this case. Three cross-sections through the synthetic and solution model are shown in

Figure 7; as you can see, the recovered structure is virtually identical to that of Figure 7

in the paper, despite the use of a smaller source propagation grid. If at any time during

the execution of tomo3d you wish to examine the progress of fm3d, simply open the

fm3dlog.out file, which is continually updated.

The residuals.dat file should contain the following list of numbers (allow for some slight

variation due to the use of different machine architecture and compilers):

363.85 0.13243 13.23832

134.72 0.01816 1.81503

75.96 0.00577 0.57699

53.70 0.00288 0.28837

44.81 0.00201 0.20075

39.48 0.00156 0.15589

35.97 0.00129 0.12937

63

which indicates that the RMS traveltime residual has been reduced from 364 ms to 36 ms.

The vertical smearing of the checkerboard pattern that is evident in the upper mantle is

unlikely to be reduced by increasing the density of the propagation grid.

Note that both the velocity and interface inversion switches in invert3d.in have been

switched on (i.e. set to 1). In the frechgen.in file, the velocity derivative entry has been set

to -1, indicating that all velocity parameters will be inverted for. However, the interface

derivative entry has been set to 1, indicating that only one interface is to be inverted

for. The entry on the line below has been set to 2, which corresponds to interface 2 (the

Moho). It is important to understand how this two level hierarchy works when specifying

which parameters are to be constrained by the inversion.

The synthetic model and traveltime dataset used in this example are based on the

input files contained in example1/mkmodel/. The 3-D heterogeneous model is based on the

grid3dg.in file, and the source and receiver files are based on the moddata.in file. moddata

was used to generate the sources.in and receivers.in file. The input file to this program,

moddata.in, reads in two source input files, sourcestele.in and sourceswa.in. The first of

these files specifies the teleseismic source locations, and the second specifies the wide-

angle source locations. synthdata was used to create otimes.dat from the arrivals.dat file

produced by fm3d when run in forward mode with the synthetic model. The rtimes.dat

file, which specifies the traveltimes through the reference model, is used to create the

model arrival time residuals for the teleseisms (see invert3d.in).

The subdirectory example2/gmtplot/ contains all of the files necessary to produce slices

through the 3-D model using GMT. Simply run gmtslice to create the GMT input files,

and then execute any of the shell scripts provided (i.e. plotd, plotns, plotew, plotgc

and plotint).

9.3 Example 3: Joint inversion of active and passive source

datasets

The final example (see example3/) differs from the previous two in that observational

data extracted from seismograms are used, rather than synthetic data. The active source

data set comes from the 1995 TASGO project, which involved a large number of air-gun

shots fired during a complete circumnavigation of Tasmania (southeast Australia). An

array of land-based vertical component seismometers recorded the energy from the shots,

64

which arrived in the form of various phase types, including Pg, Pn, as well as PmP.

The passive source dataset was recorded in 2002 during the TIGGER experiment, which

involved the deployment of an array of vertical component short period seismometers

in northern Tasmania for a five month period. Approximately 101 teleseismic events

with sufficient signal-to-noise ratios to identify global phases such as P, PP, ScP, PKiKP

etc. were identified from the continuous recordings. In total, 9692 absolute and relative

traveltimes are used to simultaneously constrain the 3-D lithospheric P-wavespeed and

Moho geometry beneath northern Tasmania. The full results of this study can be found

in the paper (see the docs/ directory):

• Rawlinson, N. and Urvoy, M., 2006. Simultaneous inversion of active and passive

source datasets for 3-D seismic structure with application to Tasmania. Geophys.

Res. Lett., 33 L24313, doi:10.1029/2006GL028105.

You should be able to replicate the tomographic images contained in this paper using the

input files provided.

As in the previous example, you can construct the solution model by entering exam-

ple3/ and executing tomo3d without modifying any of the files. However, as in Example

2, note that you must copy the machine dependent binary traveltime tables ak135.hed

and ak135.tbl into this directory from their default location in sources/inputfiles/ (they

are placed there by compileall). Compared to Examples 1 and 2, this is a much larger

problem, and therefore takes significantly more CPU time to compute. Six iterations on a

Linux workstation with a 1.6 GHz AMD Opteron CPU took just over three hours. Note

that the solution in the paper uses a refined source grid comprising 1,000,000 points; here,

the refined grid only comprises 125,000 points (see the last line of the propgrid.in file). Al-

though this only affects the active source traveltimes, the difference in computing time is

still significant. The resulting solution model (see Figure 8) is virtually identical to that

produced in the paper (see Figure 3 of the GRL article), so the additional computation

times required by the larger source grid is not really warranted.

When tomo3d is executed, the full screen output that should eventually appear is as

follows:

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

65

144˚

144˚

145˚

145˚

146˚

146˚

147˚

147˚

148˚

148˚

149˚

149˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

144˚

144˚

145˚

145˚

146˚

146˚

147˚

147˚

148˚

148˚

149˚

149˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

144˚

144˚

145˚

145˚

146˚

146˚

147˚

147˚

148˚

148˚

149˚

149˚

−42˚ −42˚

−41˚ −41˚

−40˚ −40˚

−35 −30 −25

−160

−120

−80

−40

0

144 145 146 147 148 149

−160

−120

−80

−40

0

144 145 146 147 148 149

−160

−120

−80

−40

0

144 145 146 147 148 149

D
ep

th
 (

km
)

Longitude ()

D
ep

th
 (

km
)

Longitude ()

D
ep

th
 (

km
)

Longitude ()

8.0%−8.0% −6.3% 6.3%(a) (b) (c)

(d)

?
?

??

?
?

?
? ?

Smearing

Tamar River

?
?

?

?

??

Smearing

TFSSmearing Smearing TFS SmearingSmearing TFSSmearing Smearing

δVp (m/s)

15 km

δVp (m/s)

41.2 S

Moho depth (km)

52 km

MRV

41.4 S 41.6 S

Figure 8: Summary of Tasmania tomography results. (a) Crustal section at 15 km depth;

(b) Moho structure; (c) mantle section at 52 km depth; (d) three east-west cross-sections.

TFS = Tamar Fracture System; MRV = Mt. Read Volcanics.

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

PROGRAM invert successfully completed!!

which indicates that six iterations of the inversion routine has been completed. All basis

vectors used in the 20-D subspace inversion scheme are linearly independent, so the SVD

orthogonalization algorithm does not need to dynamically reduce the size of the subspace

(cf. Example 1). The traveltime residuals as a function of iteration number are summa-

rized in the file residuals.dat, which should contain something like:

297.27 0.08838 13.49418

185.65 0.03447 4.53093

158.23 0.02504 3.34427

148.66 0.02210 2.99040

145.15 0.02107 2.86967

142.13 0.02020 2.78905

66

141.70 0.02008 2.75926

This indicates that the RMS traveltime residual has been reduced from an initial value

of 297 ms to a final value of 142 ms (representing a 77% variance reduction, as computed

from the second column). The final column lists the χ2 value associated with each model.

Unless you really want to visualize the ray paths, it is not advisable to switch this option

on in mode set.in, because the resulting output file is several hundred Mb in size.

Note that both the invert3d.in file and the frechgen.in file are used to specify which

parameters are constrained in the inversion; in this case, both velocity layers and the

Moho structure are inverted for. The “Remove mean from predicted teleseisms” option

has been set to 0 in invert3d.in. To be consistent with the observed relative arrival time

residuals, this switch really should be set to 1. However, for this particular problem, doing

so results in the inversion diverging for some reason. It is not clear why this happens, but

since the initial model essentially represents the laterally averaged solution model, this

inconsistency is not serious.

Unlike Example 2, which also used teleseisms, reference teleseismic traveltimes (which

are used to compute model traveltime residuals) are not computed using rtimes.dat. This

is because the observed residuals in otimes.dat include a component due to elevation

(i.e. the observed residuals have not been corrected for elevation). Therefore, in order

to properly compare otimes.dat and mtimes.dat, the arrival time residuals in mtimes.dat

must also contain a component due to elevation. This is achieved by running fm3d

with the reference model, and setting all receiver elevations to zero (this is the file called

receiversnec.dat). The arrivals.dat file that was produced has been copied to rtimesnec.dat,

which then becomes the reference traveltime file. If you open invert3d.in and residuals.in,

you will see that rtimesnec.dat is used in place of rtimes.dat.

The reference model used in this application was generated using the grid3dg.in file

located in example3/mkmodel/. Note that an external 1-D crustal model (crust.vel) and a

modified ak135 model (ak135modified.vel) are used to describe the crust and upper mantle

velocities respectively. Since we are now dealing with observational data, the program

obsdata is used to generate the sources.in, receivers.in and otimes.dat file. All of the

traveltime pick files are located in the subdirectory picks. Note that the formats of the

sourcestele.in and sourceswa.in file are quite different to the equivalent files in the previous

67

example.

The subdirectory example3/gmtplot/ contains all of the files required to produce slices

through the solution model using GMT. Simply run gmtslice to convert FMTOMO

output to GMT input, and you will be able to execute the plotting scripts provided

(plotd, plotew, plotns, plotgc and plotint) to generate postscript output (i.e. the file

gmtslice.ps).

10 FAQs

1. Q. How can I optimize the speed of the tomographic inversion?

A. The key to getting the maximum performance from the code is to specify the

coarsest propagation grid spacing that still produces traveltimes with sufficient ac-

curacy. This is because the traveltime prediction step is much slower than the

inversion step, and FMM scales as O(NlogN), where N is the total number of points

on the computational grid. Therefore, if you halve the propagation grid spacing, the

computing time will increase by a factor of at least 8. The size and density of the

refined propagation grid that is used in the source neighbourhood is also a crucial

consideration. The refinement level parameter (κ) and grid cell spanning parameter

(τ), contained in the last line of propgrid.in, should be chosen carefully. Remember

that the total number of refined grid nodes is equal to (κ × τ × 2)3. For example,

if κ = τ = 5, then the total number of refined nodes is already 125,000.

One approach for finding the optimum size of the propagation grid is to begin by

making it very coarse, and then gradually refining it until the inversion solution

doesn’t change significantly. At this stage, there is little point in increasing the

accuracy of the traveltime predictions.

2. Q. Can hypocenters be relocated into different layers?

A: No. This is because the path signature associated with each traveltime must be

explicitly specified a priori. If a source is relocated to another layer by the gradient-

based routine, the original path signature specification will no longer be valid. In

future versions of the code, I will try and include a routine that attempts to deal

with this limitation by applying some assumptions (e.g. the phase can only transmit

through an interface).

68

3. Q. Does FMTOMO include a routine for performing fully non-linear earthquake

relocation?

A: No. However, you can edit mode set.in so that fm3d generates the traveltime

grid associated with all or a subset of sources. In theory, you could apply any

non-linear optimization routine to search these grids and relocate the source.

4. Q. Can FMTOMO be used for global tomography?

A: No. Although fm3d applies FMM in spherical coordinates, periodicity is not

accounted for, nor is the degeneration of the coordinate system at the poles. In

addition, no correction is made for the true ellipsoid shape of the Earth. One could

make make an a posteriori correction for Earth flattening, however. FMTOMO is

currently best used for local and regional problems.

5. Q. Can FMTOMO be used to solve problems in 2-D or 2.5D?

A: FMTOMO requires the input model to have a finite span in all three orthogonal

dimensions. Therefore, it cannot operate in 2-D space. 2.5D models, which exist

in three spatial dimensions but only have structure varying in two dimensions, also

cannot be inverted for. This is because cubic B-splines require at least four nodes in

any dimension. However, if you only specified four nodes in one of the dimensions,

then the resulting model may well be pseudo 2.5D, as the structure in this direction

would probably not change very much.

6. Q. I want to describe a model that is very detailed near the surface (e.g. sediment

layers), but becomes coarser at greater depths (e.g. the upper mantle). Can FM-

TOMO deal with this kind of situation?

A: It can to some extent. The parameterization allows velocity grids of different

resolutions to be specified for each layer; therefore, you could allow fine detail in one

layer, and only coarse detail in another. However, the horizontal grid spacings of all

layer boundaries must be identical, so this does not extend to interface geometry.

In addition, the propagation grid must be regular, so it may be that the high reso-

lution velocity layer gets undersampled, which will result in traveltime predictions

becoming less accurate.

7. Q. Will teleseismic wavefronts pass through the side of the model if necessary?

A: Yes, but take care with your specification of path signature to make sure that

69

no inconsistencies occur.

8. Q. Will new features be added to the code in future?

A. To begin with, I will try to fix any obvious bugs. In the longer term, I hope to

include the ability to jointly invert P and S traveltimes for Vp/Vs ratio or bulk sound

and shear moduli. Other suggestions for additional features would be welcome.

70

