Some notes for 3-D ray tracing program
TRABOX

Malcolm Sambridge,
Research School of Earth Sciences,
Australian National University

Latest revision February 1999

(Original version 1987)

TRABOX is a driver program for tracing rays through a 3-D mesh of velocities in
Cartesian co-ordinates. All two-point ray tracing is performed by
calling the routine trac3d. One two-point ray is traced for each call to trac3d. The
program was not originally designed for general distribution and is rather ugly
in parts (especially the driver program trabox). The aim was to be versatile in
the number and type of ray-tracing problems that could be dealt with from a
simple input. The program has been added to and modified many times and
some features of the code are obsolete (even some input parameters are
ignored!). The following is a reasonably complete description all its features. The
distribution also contains some example sets of input files to demonstrate the
various modes of the program. The routine trac3d which performs all the actual
ray tracing could, if necessary, be incorporated into another more problem
specific program (if you are willing to try !).

Reference

TRABOX is based on the algorithm described in Sambridge & Kennett (1990).

Boundary value ray-tracing in a heterogeneous medium: a simple and versatile
algorithm , Sambridge, M.S. and Kennett, B.L.N Geophys. J. Int,, 101, 157-168,
1990. doi:10.1111/j.1365-246X.1990.tb00765.x

Conditions of use

This program is available free of charge for non-commercial research or
teaching purposes only, and at a university or teaching institution only. For all
other uses written permission is required from the author.

This program is provided “as is'. You use it at your own risk. [would be happy to
hear what you do with it, but please don't email me and ask obscure
questions, because I won't remember the answer. | ask that any use of it in

http://dx.doi.org/10.1111/j.1365-246X.1990.tb00765.x

published work contains a short acknowledgement and a reference to the above
paper. I can be contacted at malcolm@rses.anu.edu.au

Compilation

To compile the source codes type,

> make traclib tracer trabox

or,

> make all

The program expects to find the files "Tra_mod3D.in' and "Tra_rays.in'in the
directory from which the program is run. If the input model is being read in in
binary format, as in Example 4, it also expects to find the file “Tra_mod3D.bin'".

A second program called ‘readray.f' is provided as an example of how to read in a
binary ray file and interpret it.

I/0 structure

Input files:

*Tra_mod3D.in'

"Tra_mod3D.bin'

“Tra_rays.in'
Output files:

‘Tra_iterations.out'

“Tra_raypath.out’

"Tra_details.out’

‘Tra_iterations.out'

“Tra_summary.out’

contains details about the input 3-D mesh of velocity points.
If the ascii read option is used (ifile <= 0) then the velocity
model is also read in here.

contains the input 3-D mesh of velocity points in binary if
the unformatted read option is used (ifile > 0).

contains details of the rays to be traced.

contains a summary info of each iteration in two-point ray
solution.

contains position and velocity model along each raypath
(unformatted if option is set).

contains full details of each raypath at every point of
numerical integration. (Optional, used for debugging)

a summary of each ray traced

contains 1 line summary of two-point solution rays.

Velocity model representation

The velocity model represented by a 3-D mesh of knots and uses a
Cardinal spline interpolation (from Martin Smith).

Two velocity models can be input.

The model 1 consists of two independent 3-D meshes of velocities separated
by an irregular interface, which can contain a velocity discontinuity. The shape of
the interface is specified by a series of connected triangular plates. The vertices
of thetriangles are the depths of the interface (see Fig. 2 of Sambridge
1990, Geophys.]. Int., 102, 653-677). These vertices may be read in if desired,
or fixed to a constant depth (horizontal) interface. (This model has not been used
for some time and remains as a historical feature of the program.)

The model 2 is a single 3-D mesh of velocities with no interface.

Crustal mesh

Model 1 or 3

-

~

- -

~ -

.......
e

Upper Mantle
mesh

Figure 1. Illustration of nodal mesh used in TRABOX. The interface is only used between mesh 1 and
2. As an alternative mesh 3 can be used without an interface.

Input format of velocity models

The velocity model may be input from an ascii file Tra_mod3D.in (inefficient), or
from an unformatted file Tra_mod3D.bin (quicker) in the order,

(((v(iljlk)Ii=llnx)lj=llnY)lk=llnz)

All three 3-D meshes may be input (two for model 1, one for model 2) or only
those which are actually being used. These options are controlled by the
parameter IFILE read in on line 5 of the input file Tra_mod3D.in.

IFILE Possible values (-2,-1,0,1,2)

Format code for reading in 3-D mesh. Several formats for reading in 3-D mesh
are allowed.

ifile<=0 means read in mesh from ascii file Tra_mod3D.in
ifile>0 means read in mesh from binary file Tra_mod3D.bin
ifile =-2 or 3 means only Model 1 present in file.

ifile=-1 or 2 means only Model 2 present in file.

ifile=0or1 means both Model 1 & 2 present.

The number of nodes in the X and Y directions (nx,ny) are read in from line ? and
the three 3-D meshes may have different numbers of nodes in the Z-direction
(nz1,nz2,nz3).

Array sizes

The internal sizes of the arrays should be large enough for the 3-D velocity
models. If they are not then the program writes an error message advising that
the current defaults in the parameter statement

parameter (nxmax=602,nymax=602,nzmax=5,nzPgmax=1,nzPnmax=1,nzSmax=5)

must be adjusted be editing the include file "meshsizes.param" and the program
must then be recompiled by typing

make tracer traboX

(Note: parameter nzmax should be the maximum of nzPgmax,nzPnmax &
nzSmax, which are the maximum values of nz1,nz2 & nz3 respectively.) These
parameters determine the main memory demands of the program and so it is a
good idea to keep them equal to or just bigger than that required by your
velocity model.

2-D read in option

Internally the program always uses a 3-D mesh of velocities and the minimum
number of nodes in any direction is 4 (to allow cubic interpolation to work
properly). For ease of use a 2-D mesh may be read in by specifying a node size of
1. If the value of IFILE and combination of nx,ny,nz1,nz2,nz3 is such that a 2-D
mesh is being read in, then it is converted to a 3-D mesh internally by duplicating
the layers corresponding to the parameter with node size=1, e.g with
ifile=1,nx=101,ny=101,nz1=*nz2=*nz3=1 then a single XY layer is read in and
converted to a 3-D mesh of 4 nodes in the Z direction.

Units

The units used for length velocity etc are defined by the sizes given for the node
spacing dx,dy,dz. Other quantities, e.g. origin position and velocities are assumed
to be in a consistent unit (usually km & s).

Conventions

All angles in input file are in degrees. Azimuth is the angle clockwise from the x-
axis and declination is measured from the upward vertical, i.e. horizontal is
declination 90, and straight down is declination 180. A right-handed axes system

is used. For most geographical problems this means that x-, y- and z-axis can be
in the East, South and downwards respectively or maybe North, East,
downwards. In actual fact it does matter what the directions of the axes are, as
long as they make up a right handed system. This must be remembered when
designing the input velocity model. Declination is set to 90 degrees auotmatically
if 2-D surface ray tracing option is used.

Linear gradient models surrounding the 3-D mesh

To avoid problems associated with rays passing outside of the model, a set of
linear gradient models are used, i.e. outside of the model the velocity field takes
the formv = vo + vx*x + vy*y + vz*z. For each of the two velocity models
two linear gradient models may be specified (lines 31-41 of Tra_mod3D.in). The
first is used when a ray passes out above the 3-D mesh or to the sides of the 3-D
mesh and the second is used when the ray passes out below of the 3-D mesh. To
allow accurate ray tracing the numerical equation solver requires that the
velocity model (and both its first and second derivatives) are continuous. Within
the 3-D mesh this condition is satisfied by the interpolation procedure but in
general it will not be met across the boundaries of the box. Therefore a ray will
incur a numerical error as it traces across the box edges. This is usually o.k. if it
occurs during iterations of two-point ray tracing so long as the final (solution)
ray ends up entirely within the box.

Ideally the entire 3-D mesh should be surrounded by a “cushion' in which the
interior 3-D model is smoothly ‘knitted' into the surrounding linear gradient
model. (I always intended to make the program do this automatically but could
never be bothered.) In practice it is hardly necessary, as one can always make
the mesh bigger in nx and ny than needed. The Z-direction is more serious as
rays can easily go out of the bottom of the box during iterations for a two-point
ray. The “cushion' facility does exist in this direction. The program automatically
puts 3 extra layers of mesh points below the model where the 3-D model is
knitted smoothly into the linear gradient model below. The knitting only occurs
for the z component of the linear gradient model, i.e. the 3-D mesh is knitted into
the model v = vo +vz*z (again I didn't get around to knitting into the full linear
gradient component model).

In short then, the surrounding linear gradient models are no big deal. Their main
function is to refract rays back (usually upwards) towards the model. It is
advisable to choose the models (usually with vx=vy=0) so that large velocity
jumps at the edges of the box are avoided. If the 3-D mesh is a perturbation
about a 1-D model then its a good idea to make the two linear gradient models
equal to the background 1-D models at the top and bottom of the 3-D region.

If any rays pass outside of the model during iterations for a two-point solution
then these are flagged by a ~ *' in the output summary file “Tra_summary.out'.

Irregular or flat interface/discontinuity

If you wish to use just the 3-D mesh without an interface (model 2) then you can
ignore this section.

The variable interface is an “historic' feature of the program and has not been
used or tested for a number of years. (I have had no cause to use it other than in
the original project for which the code was written.) No guarantees are given

that it still works, but I hope it does. If it doesn't it should not be too difficult to
make it work again. Remember the interface is only present in Model 1. If Model
1 is not read in (i.e. ifile = -1 or 2) or if tracing is only in model 2, then it is
ignored.

The interface can be input in two ways. If the parameter ‘meshformat’ (first
parameter line 5 of "Tra_mod3D.in") is equal to 1, then a horizontal interface is
assumed at the nth layer from the top of the upper mesh in Model 1, where n is
read in on line 27. It is advisable (but not necessary) that there are at least two
more layers of the upper mesh below the interface level, i.e. that n <= nz1-2. This
produces an “overlap' of the upper mesh below the interface, which is used by
the cubic velocity interpolation procedure above the interface. If this condition is
not met then a slight divergence from cubic interpolation may occur, which is not
serious. For the same reason the position of the lower mesh is fixed by the
position of the interface such that the third layer of the lower mesh is at the
interface depth. Again there are two overlapping layers above it, which are only
used by the interpolation procedure. (The interpolation uses the 64 nearest
velocity nodes, in 3-D, to calculate the velocity at any point in the model.)

As an example, if the upper mesh is nz1=15,dz=10,z0=0 the lower mesh is
nz2=10, and the interface meshknot=13, then the interface is at a depth of
130km and immediately below this is the third layer of the lower model, (the
tenth layer is at a depth of 190km).

Any type of discontinuity is allowed between the two meshes on either side of
the interface. Note the ‘hidden' velocity layers should contain velocities
appropriate to the velocity distribution in the respective mesh (i.e. some smooth
continuation as they will be used to interpolate for velocities within one layer (+-
dz) of the interface.

If meshformat=2 then a set of depth nodes is read in using the following code

Input line 26 read(lu, *)
input line 27 read(lu, *)mohox,mohoy
input line 28 read(lu, *)
input line 29 read(lu, *)
input line 30 read(lu, *)

do 311 i = 1,mohoy+1
read(lu, *) (moho(i,j),j=1,mohox+1)

311 continue

which comes from subroutine vmod. In this case it is even more important that
depths read in are centred around a value which has an “overlapping' segment in
the upper model as before. The lower model is assumed to be positioned such
that the third layer is at the depth of point moho(1,1). (If this is inconvenient
change the value of of parameter "depthm' in subroutine vmod to an appropriate
value.)

Tracing Rays

The driver program trabox is designed for a range of initial value and two-point
ray tracing problems. The subroutine that does all the work (trac3d) always
performs two point ray tracing until the desired target has been hit or some
other termination criteria have been reached. The algorithm is of a shooting type
which is not as efficient as most bending methods but far more versatile.

Two-point ray tracing

The code was originally developed for two-point ray tracing, i.e. find the ray
between a given pair of receivers in a 3-D model. For complex velocity models
there is no guarantee that a solution exists to this problem (the receiver may be
in the shadow of the source) and there is also no guarantee that any solution
found will be any particular arrival (i.e. the first), however, some precautions can
be taken to encourage a convergence to the first arrival (starting with a suitable
starting ray). Source and receiver positions are input in file Tra_rays.in together
with all other parameters which control the number and type of rays to be
traced.

Converge criteria for two-point ray tracing

For two point ray tracing the program stops tracing a ray when it hits the
HORIZONTAL PLANE THROUGH THE RECEIVER. It then compares the endpoint
of the ray with the target to decide whether convergence has been achieved. A
tolerance is therefore required in Z (to hit the target depth) and in (X,Y) to hit the
target position on the target depth. Values of xtol, ytol and ztol are read in on line
8. Also an internal interface tolerance is required (line 8) to decide on when the
ray has hit the interface (applies only to tracing in model 1). The complete ray
converge criteria consists of hitting the horizontal plane though the receiver and
hitting A BOX OF SIZE XTOL AND YTOL CENTRED ON THE TARGET.

The program will stop tracing a ray on the first time it hits the horizontal plane
through the receiver, so if the receiver is below the source it will meet the plane
on the downward path of the ray rather than the upward path. The source must
therefore always be below the receiver.

Ray tracing in a 2-D plane
There are two ways of ray tracing through a 2-D model.

For velocity models that are 2-D, i.e. have no variation in the Y or X direction the
program will trace rays in exactly the same way as in a 3-D model, with the same
convergence criteria above. Although the ray will not move out of the
source/receiver plane. As far as the program is concerned it is still dealing with a
3-D model. (The initial azimuth can even be set out of plane and the program
should converge to a correct ray in the source/receiver plane. Although in
practice the only point in doing this would be to check the accuracy of the ray
tracer.)

For convenience a special option has been introduced for tracing a ray on a 2-D
(X-Y) surface. The only really fundamental difference between this and the above
mode is that the convergence criteria is different. To use this “surface' ray tracing
option a 2-D model in X-Y is assumed, i.e. no variation of velocity with depth (see

reading in of a 2-D velocity model above). The mode is activated by a parameter
read in from line 6. If its value is 1 then the 2-D mode is assumed and the
convergence criteria of hitting the depth plane through the receiver is replaced
with hitting A GIVEN RADIUS FROM THE SOURCE ON THE XY PLANE. This radius
is read in from line 38. If the value is 0 then the source-receiver separation is
calculated and used. The second criteria (for two-point ray tracing) of hitting a
box around the target is unchanged. The 2-D option can be used with either the
two-point ray tracing mode or pure shooting at regular interval mode (see
below).

This option is useful when the normal convergence criteria for 3-D models is
unsuitable for a particular 2-D model. E.g. for mapping paths of surface waves, or
for tracing from borehole to borehole when the sources may be above the
receivers. (In this latter case the X-Z components of a 2-D borehole velocity
model could be fed into the X-Y parameters of the program.)

Shooting at regular angles in declination and azimuth

As a convenience an option has been included to shoot rays at specified (regular)
intervals in azimuth and declination. (The alternative is to enter every source
receiver pair explicitly using the multiple read format described below.)
Although in this mode rays are only shot out at known azimuths and
declinations, internally two-point ray tracing is being performed and X and Y
tolerance is set to 10**6 km so that they always converge in 1 iteration. (See line
12 of input file Tra_rays.in.)

The parameters read in on line 12 are ndec,deldec,nazi,delazi and the sequence
of rays shot out from the source takes the form

if(ndec > 0, nazi > 0)

do 1 i = 1,ndec
dec(i) = dec_initial + (i-1)*del dec
do 1 i = 1,ndec
az(j) = azi_initial + (j-1l)*del azi

If ndec=nazi=0, then only the ray with (dec_initial,azi_initial) is traced, and these
values are read in on line 46 (see below).

Parameters controlling numerical integration

Three parameters control the numerical integration that is used in time stepping
the rays.

line 14:steplength,epsilon,ifixed (internally they may have different names)

The program has the option of either a fixed steplength numerical integration
(4th order Runge Kutta, which is slow but reliable and sometimes necessary), or
an adaptive steplength (5th order Runge Kutta, which is usually much more
efficient but requires using the parameter epsilon to control required accuracy).
The fixed steplength is achieved with ifixed=1. In this case the steplength is given
by ‘steplength’ (in seconds) and epsilon is ignored. For ifixed = 0 the adaptive
steplength procedure is used. The parameter steplength is the starting
steplength, i.e. that used for the very first step from the source, and the very first
step after hitting an internal surface of discontinuity. The adaptive steplength

routine may decide to increase or decrease this value depending on the required
tolerance and the nature of the velocity model.

The parameter epsilon controls the accuracy imposed on the adaptive steplength
numerical integration. It can be difficult to use because it actually controls the
fractional accuracy in the increments to the raypath variables at each step. This
is necessary because in ray tracing we are usually worried about the cumulative
error of parameters like X, and Y over the whole ray and not the absolute error at
each step. The tolerance criteria is the same as eq. 15.2.6 of Numerical Recipes
(Press et.al. 1987, 1st ed., p557). Refer to section 15.2 of Numerical Recipes for
more details. The accuracy control is currently applied only to the (X,Y) position
of the ray path and the length (parameters 1,2 and 16 respectively). The stepsize
is automatically adjusted to meet the error criteria of the worst offender. [It is
possible to apply the error criteria to other parameters (e.g. dec, azimuth or
geometrical spreading variables) by changing the array ‘wscal' in subroutine
trac3d at lines around 232 and 272.]

The accuracy criteria cannot be applied to travel time because that is the
variable, which has been used as the independent parameter. So in effect there is
(by definition) no error in the travel time but the ray position is calculated (with
error) for some given travel time. It is possible to change the independent
parameter to say arc length (or some other parameter), by changing the
equations in subroutine Diff. I have never found it necessary to do this, but if you
try you should note that some of the program's logic has been designed using the
travel time as the independent parameter and this may have to be adjusted.

Note: the efficiency of the adaptive steplength integration (and hence the whole
program) will be sensitive to the value of epsilon. Small epsilon (~0.001) means
high accuracy, which means short steps, which means more steps, which takes
more time!

Several other parameters are needed to avoid the possibility of infinite loops in
the ray tracing procedure. They are the maximum number of steps used (line 18)
and the maximum number of iterations for two-point ray tracing (line 20). The
first is hardly ever needed but must be set to stop a ray continuing forever. (One
circumstance where this might occur is when the ray leaves the 3-D model and
passes into a homogeneous surrounding model and the declination at the point
where the ray leaves the model is > 90 degrees. So it will never come back to the
target surface above it.) The second may often be needed if the two-point ray
tracer fails to hit the target within the specified tolerance. This can frequently
occur. Some of the reasons are: 1) There is no two-point ray between source and
receiver (target is in a shadow of the source), 2) the starting angle is too far
away, or lies in a range prone to divergence, 3) The accuracy of the numerical
integration is too low. Usually 1 or 2 is responsible.

Printing out details for debugging, and complete raypaths

Lines 24, and 27 contain parameters, which determine the diagnostic level of
output. Line 24 is a print switch (usually set to 1). In this mode the program
prints only summary information to file Tra_details.out after each two-point ray
has converged. If its value is 0 then full details of every nth step of the each ray is
printed out to the same file. This mode is usually used for debugging or finding

out what actually happened to a ray that failed for some reason. The value of n is
read in on line 27. (n=1 can give and enormous output file).

line 31 contains a parameter which is now obsolete (sorry I should have
removed it but haven't got around to it). It was originally used to calculate
Frechet derivatives of travel time with respect to each velocity node for each
raypath. [t was used by a 3-D seismic inversion program. The section of code that
was activated by it is intact but corresponds to a particular size of velocity mesh.
I do not recommend trying to re-activate it. The parameter is ignored by the
program.

line 35 contains a switch for writing out the complete raypaths to an
unformatted file “Tra_raypath.out'. Possible values are n (n>=1),0,-1,-2.

If n >=1 then the raypath of iteration n is output.

If n = 0 then the no raypath of is output.

If n = -1 then only the final (converged) raypath is output.
If n = -2 then all iterations of all raypaths are output.

When output is activated the parameters x(i), y(i), z(i), azi(i) dec(i), velocity
model and derivatives, and travel time are output. The frequency of output is
determined by the value of n read in on line 27 (which also controls the print out
frequency above), e.g. if n = 10 every tenth point will be written out. [Note if
adaptive step size is being used (see above) and n is large (say 100) you may
only get the source and receiver point output (because the ray may have less
than 100 points in total). If fixed steplength is being used then equal time steps
will be printed out at a frequency of n x steplength.] A simple program
‘readray.f' is provided to read the output ray file Tra_raypath.out and write
information to the screen about all rays in the file. This program can be used as a
template for reading raypath information into other programs.

Multiple sources and receivers

The (x,y,z) of the source is read in on line 31, while the receiver (target) is on line
44. On the source line the ‘ray code' is also read in. If both model 1 and model 2
have been readin (see above) then the ray code determines in which of these the
ray will be traced. If ray code = 1 then model 1 is used (with interface), if ray
code = 2 or 11 (model two is used).

Line 46 contains the initial azimuth and declination of the ray used for two point
ray tracing. If the shooting options are used (from line 12) then these are the
initial azimuth and declination for the spray of rays. If the special values (0.,0.)
are read in then the azimuth and ray is automatically set for the direct ray in a
homogeneous medium. (It may be worthwhile changing this so that the
declination is appropriate for a ray in a linear gradient medium, possibly one
rThe first three examples us the same velocity model and three different ray
input files "Tra_rays.in'. The fourth example uses a 3-D velocity model in binary
format, and a different ray input file.ead in for the surrounding mesh. The value
of “dec(ray)' would have to be changed in main routine TRABOX at about line
404 in an obvious fashion.)

The program allows input of multiple sources and receivers. The parameter read
in on line 49 (irepeat_condition) determines what the program expects to see in
the lines 56 onwards. Possible values are (0,1,2,-1)

=0 means read in only new ray end points (lines 38 - 55) and
trace the ray.

=1&2 means read complete set of parameters (lines 1 - 55) but
use the final take- off angles from the previous ray as the
starting guess for the next ray. One use of this is in re-
tracing a ray more accurately, i.e. by decreasing tolerances.
(If irepeat_condition = 1 and the ray failed to converge then
program is aborted, if = 2 it continues on to next ray.)

=-1 means read complete set of parameters (lines 1 - 55). This
is used when the next ray is a new one and one may wish to
reset some parameters to different values.

ExamPles

The following examples with input files are included in the distribution. Input
files for each and a README file is contained in the subdirectory of the same
name. The first three examples use the same velocity model and three different
ray input files "Tra_rays.in'. The fourth example uses a 3-D velocity model in
binary format, and a different ray input file.

Examplel: Twopoint ray tracing of a single ray

Example2: Twopoint ray tracing of multiple rays

Example3: Twopoint ray tracing of multiple rays using repeat option
Example4: Shooting through a 2-D model (using 2-D options)

Examples 1,2 and 3 require arrays defined in meshsizes.param1, while Examples
4 and 5 require array sizes defined in meshsizes.param?2

To build executable for examples 1-3

cp meshsizes.paraml meshsizes.param
make tracer trabox

and for examples 4-5

cp meshsizes.param2 meshsizes.param
make tracer trabox

Examplel
This example uses the following features of the program trabox:

1. 3-D ascii input from file Tra_mod3D.in: trabox reads in a 3-D (XYZ) model
in ascii. nx=16,ny=128,nz=32 (see Tra_mod3D.in line 11). Only model 2 is
read in. (By changing the value of “ifile' model 1 could also be read in, see
Trabox_manual.)

2.

(Note: this is an inefficient way of reading in the 3-D velocity model. See
example 4 called 'Example4_2D' for an example of using the binary read
option.)

Two-point ray tracing is performed (see Tra_rays.in line 6) in model 2 for
a single source/receiver pair. The parameter (epsilon, line 15 of
“Tra_rays.in') that controls the accuracy of the adaptive numerical
integration is 1/50 th of the value used in Example3_2D. (The allowed
tolerance in x,y and arc length is therefore 1/50th of the value in
Example4_2D.)

Only a summary of the iterations is written to file "Tra_details.out’. (No
raypath file is written out see line 36 of "Tra_rays.in')

Example2

This example is similar to the previous Examplel_twopoint.

1.

The same model is read in as in the previous example
"Examplel_twopoint'. (You must move the file Tra_mod3d.in to this
directory to run it)

Two-point ray tracing is performed for two source receiver pairs. The
repeat condition (line 50 of Tra_rays.in') is set to zero which means that
at line 57 either there can be an end of file (as in previous example, or
another source receiver pair can be read in as is the case in this example.
The raypath switch is set to -1 for both source receiver pairs. This means
that the final (converged) raypath is written out to file "Tra_raypath.out'.
(Use the utility program readray.f to check the contents of this file.

Example3

This example is similar to the previous ExampleZ_twopoint_multiple.

1.

2.

The same model is read in as in the example "Example1_twopoint'. (You
must move the file Tra_mod3d.in to this directory to run it)

Two-point ray tracing is performed for two source receiver pairs. For the
second ray the repeat condition (line 66 of Tra_rays.in') is set to -1 which
means that at line 73 a complete new set of parameters is read in (i.e.
similar to lines 1-56) and a new ray is traced with these parameters using
the final take-off angles from the converged second ray. The tolerances
for the first two rays are rather loose (=0.1, see line 14 of Tra_rays.in) but
the repeated ray is much higher (=0.005, line 86). This is an example of
using loose tolerances to converge on a two-point ray and then repeating
with increased accuracy. Usually, as in this case, the more accurate ray
converges in 1 iteration and so an accurate two-point solution can be
obtained without calculating rays at high accuracy for all iterations of the
two-point ray tracer.

The raypath switch is set to -1 for the repeat run through the second ray.
This means that the final (converged) raypath is written out to file
“Tra_raypath.out'. (Use the utility program readray.f to check the contents
of this file.)

Example4
This example uses the following features of the program trabox

1. 2-D input option: trabox reads in a binary 2-D (X-Y) model of size

nx=601,ny=601,nz=1 (see Tra_mod3D.in line 11)

The 2-D surface ray tracing option is used. (see Tra_rays.in line 6)

3. Shooting rays only: 50 rays are traced from a source at varying azimuths
separated by 1 degree target radius is 6900 km (see Tra_rays.in line 12).

4. All rays are written out to file "Tra_raypaths.out' (see lines 27 and 35 of
Tra_rays.in). Use program readray.f to check on rays written to file
Tra_raypath.out.

N

(Note option 2 could be used even if a 3-D model is read in.)
Array sizes

Note this example uses a large velocity model read in from a binary file. The
arrays in the program are not big enough to read in the model and the parameter
statement must be edited to allow the program to run

The correct parameter statement is commented out in the include file
"meshsizes.param"”. The comment lines must be swapped over in this file, i.e.

C parameter (nxmax=602,nymax=602,nzmax=5,nzPgmax=1,nzPnmax=1,nzSmax=5)
parameter (nxmax=20,nymax=130,nzmax=33,nzPgmax=1,nzPnmax=1,nzSmax=33)

must be replaced with
parameter (nxmax=602,nymax=602,nzmax=5nzPgmax=1,nzPnmax=1,nzSmax=5)
C parameter (nxmax=20,nymax=130,nzmax=33,nzPgmax=1,nzPnmax=1,nzSmax=33)

and then the program must be recompiled with ‘make tracer trabox'.

This is an example of the array size editing refered to in the manual. If machine
memory permits set these values bigger than any model you are likely to need
and you won't have to edit them again.

Perform the other examples first otherwise you will have to reverse these
changes to run the other examples.

Tips on improving speed with trabox.

There are several options in the input file Tra_rays.in and depending on these the
program efficiency can vary enormously. Important factors are the following:

Tip 1:

Have you used fixed or variable step-length ray tracing ? (see line 14 of
Tra_rays.in)

fixed = can be very slow and wasteful if step size is small,

variable = can be much more efficient, accuracy is difficult to control
which can affect final ray.

Accuracy of variable step-length solver is controlled mainly by second
parameter on line 14 of Tra_rays.in.

Tip 2:

A simple trick that can speed up even the variable version is to use the option
on line 49 of Tra_rays.in, set repeat_condition = 1 (or 2) which will read in a
complete set of parameters (line 1-49). The trick is to trace an approximate two-
point solution for the first ray, i.e. with loose tolerances on variable or fixed
step-size, and use those take off angles for the second ray traced more
accurately. The overall solution is then achieved by a two stage process. Also a
good idea is to use loose tolerances on endpoint accuracy for first rays to prevent
extra iterations.

Tip 3:

Raypath need only be written out (if at all) for the converged ray i.e. write switch
-1 on line 35.

Tip 4:

Turn all debugging print switches off.

The question of failure to converge on a two-point solution is much more tricky
and can be due to a number of reasons. Basically as the heterogeneity goes up
(and 50% is getting large) you usually need a disproportionate amount of
computation, intervention and tuning to get those final rays. More accuracy and
different starting points are a help.

This manual last revised February 1999

